加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做COMP9020 程序 Assignment 1

時間:2024-02-28  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


COMP**20 Assignment 1 2024 Term 1

  Due: Thursday, 29th February, 18:00 (AEDT)

Submission is through inspera. Your assignment will be automatically submitted at the above due date. If you manually submit before this time, you can reopen your submission and con- tinue until the deadline.

If you need to make a submission after the deadline, please use this link to request an extension: https://www.cse.unsw.edu.au/ cs**20/extension_request.html. Unless you are granted Special Consideration, a lateness penalty of 5% of raw mark per 24 hours or part thereof for a maximum of 5 days will apply. You can request an extension up to 5 days after the deadline.

Answers are expected to be provided either:

• In the text box provided using plain text, including unicode characters and/or the built-in formula editor (diagrams can be drawn using the built-in drawing tool); or

• as a pdf (e.g. using LATEX) – each question should be submitted on its own pdf, with at most one pdf per question.

Handwritten solutions will be accepted if unavoidable, but that we don’t recommend this ap- proach as the assessments are designed to familiarise students with typesetting mathematics in preparation for the final exam and for future courses.

Discussion of assignment material with others is permitted, but the work submitted must be your own in line with the University’s plagiarism policy.

  Problem 1

For x,y ∈ Z, we define the set

Sx,y ={mx+ny:m,n∈Z}

a) Provethatforallm,n,x,y,z∈Z,ifz|xandz|ythenz|(mx+ny).

(33 marks)

 b) Prove that 2 is the smallest positive element of S4,6.

Hint: To show that the element is the smallest, you will need to show that some values cannot be obtained.

Use the fact proven in part (a)

c) Find the smallest positive element of S−6,15.

For the following questions let d = gcd(x, y) and z be the smallest positive number in Sx,y, or 0 if there are no positive numbers in Sx,y.

d) ProvethatSx,y ⊆{n∈Z:d|n}.

e) Prove that d ≤ z.

f) Prove that z|x and z|y.

Hint: consider (x%z) and (y%z)

g) Prove that z ≤ d.

h) Using the answers from (e) and (g), explain why Sx,y ⊇ {n ∈ Z : d|n}

4 marks

4 marks

4 marks

3 marks

8 marks

2 marks

4 marks

1

4 marks

 

 Remark

The result that there exists m, n ∈ Z such that mx + ny = gcd(x, y) is known as Bézout’s identity. Two useful consequences of Bézout’s identity are:

• If c|x and c|y then c| gcd x, y (i.e. gcd(x, y) is a multiple of all common factors of x and y) • If gcd(x, y) = 1, then there is a unique w ∈ [0, y) such that xw =(y) 1 (i.e. multiplicative

inverses exist in modulo y, if x is coprime with y)

Problem 2 (16 marks) Proof Assistant: https://cgi.cse.unsw.edu.au/∼cs**20/cgi-bin/proof_assistant?A1

Prove, using the laws of set operations (and any results proven in lectures), the following identities hold for all sets A, B, C.

   a) (Annihilation) A ∩ ∅ = ∅

b) (A\C)∪(B\C) = (A∪B)\C

c) A ⊕ U = Ac

d) (DeMorgan’slaw)(A∩B)c =Ac∪Bc

4 marks

4 marks

4 marks

4 marks

4 marks

4 marks

8 marks

6 marks

 Problem 3

Let Σ = {a, b}, and let

(26 marks)

d) Prove that:

L2 ∩ L3 = (Σ=6)∗

negative even number, prove that:

L2L3 =Σ∗\{a,b}

L2 = (Σ=2)∗

and L3 = (Σ=3)∗.

a) Give a complete description of Σ=2 and Σ=3; and an informal description of L2 and L3.

b) Prove that for all w ∈ L1, length(w) =(2) 0.

c) Show that Σ2 and Σ3 give a counter-example to the proposition that for all sets X,Y ⊆ Σ∗, (X ∩ Y)∗ = X∗ ∩ Y∗.

e) Using the observation that every natural number n ≥ 2 is either even or 3 more than a non-

2

4 marks

 

Advice on how to do the assignment

Collaboration is encouraged, but all submitted work must be done individually without consulting someone else’s solutions in accordance with the University’s “Academic Dishonesty and Plagiarism” policies.

• Assignments are to be submitted in inspera.

• When giving answers to questions, we always would like you to prove/explain/motivate your answers. You are being assessed on your understanding and ability.

• Be careful with giving multiple or alternative answers. If you give multiple answers, then we will give you marks only for your worst answer, as this indicates how well you understood the question.

• Some of the questions are very easy (with the help of external resources). You may make use of external material provided it is properly referenced1 – however, answers that depend too heavily on external resources may not receive full marks if you have not adequately demonstrated ability/understanding.

• Questions have been given an indicative difficulty level:

Credit Distinction High distinction

This should be taken as a guide only. Partial marks are available in all questions, and achievable

by students of all abilities.

    Pass

 1Proper referencing means sufficient information for a marker to access the material. Results from the lectures or textbook can be used without proof, but should still be referenced.
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:CSC173代做、Java編程設計代寫
  • 下一篇:莆田鞋正確拿貨方式:盤點十個莆田鞋拿貨渠道
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    国产情侣一区| 日韩在线亚洲| 色一区二区三区四区| 一区二区在线视频观看| 久久亚洲精品中文字幕| 玖玖国产精品视频| 欧美人成在线观看ccc36| av在线播放一区二区| 久久青草伊人| 99国产精品视频免费观看一公开| 亚洲欧美日本国产| 欧美成人一级| 影音先锋亚洲精品| av成人在线播放| 蜜桃在线一区二区三区| 欧美一级精品| 欧美三区视频| 自拍自偷一区二区三区 | 欧州一区二区三区| 亚洲欧洲国产精品一区| 中文字幕人成人乱码| 亚洲a成人v| 国产免费拔擦拔擦8x在线播放| 成人av二区| 久久精品九九| 精品视频国产| av不卡一区| 日韩在线精品强乱中文字幕| 国产精品最新| 欧美精品播放| 欧美啪啪一区| 欧美aaa在线| 卡一卡二国产精品| 粉嫩av一区二区三区四区五区| 黑森林国产精品av| 日本久久精品| 日韩一区精品视频| 日韩精品一级中文字幕精品视频免费观看 | 二吊插入一穴一区二区| bbw在线视频| 91嫩草亚洲精品| 国产精品25p| 国产精品久久久久蜜臀| 水蜜桃久久夜色精品一区| 亚洲在线免费| 免费在线视频一区| 蜜桃91丨九色丨蝌蚪91桃色 | www.91精品| 欧美日一区二区在线观看 | 天天操综合网| 午夜日韩av| 黄色工厂这里只有精品| 一区视频在线| 亚洲欧美日韩专区| 日本午夜一区| 中文字幕在线看片| 日本欧美不卡| 亚洲tv在线| 麻豆国产一区二区| 高清久久精品| 日韩欧美ww| 红杏aⅴ成人免费视频| 久久精品色播| 国产一区日韩欧美| 红桃视频国产精品| 成人激情诱惑| 日韩在线短视频| 久久一区国产| 国产成人高清| 亚洲1区在线| 亚洲婷婷在线| 男男视频亚洲欧美| 日韩免费一区| 麻豆极品一区二区三区| 欧美影院在线| 欧美日韩午夜| 希岛爱理一区二区三区| 亚洲视频www| 日韩精品二区| 日韩精品福利网| 综合亚洲色图| 欧美三级午夜理伦三级小说| 午夜精品视频| 最近高清中文在线字幕在线观看1| 日韩国产在线| 91成人精品观看| aaa国产精品视频| 欧美日韩国产精品一区二区亚洲| 免费欧美日韩国产三级电影| 91在线成人| www一区二区三区| 精品精品精品| 亚洲欧美久久久| 国产福利亚洲| 久久99视频| 香蕉一区二区| 国产欧洲在线| 日韩av中文字幕一区二区三区| 78精品国产综合久久香蕉| 久久精品久久综合| 日韩电影在线免费看| 亚洲小说区图片区| 九色porny自拍视频在线播放| 一区二区高清| 蜜桃精品视频| 亚洲女同同性videoxma| av成人在线播放| 日韩电影免费在线看| 婷婷六月综合| 日韩三级一区| 青草伊人久久| 美女尤物久久精品| 亚洲片区在线| 美女主播精品视频一二三四| 色综合天天爱| 成人日韩视频| 性欧美欧美巨大69| 国产精品一页| 精品国产一区二区三区香蕉沈先生| 免费看欧美女人艹b| 欧美日韩亚洲一区| 亚洲高清激情| 日韩成人在线一区| 成人精品中文字幕| 桃色av一区二区| 日本一区精品视频| 日韩制服丝袜av| 一区二区三区无毛| 午夜精品影院| 欧美日韩一卡| 婷婷久久一区| 影音先锋在线一区| 久久精品亚洲欧美日韩精品中文字幕| 天堂中文在线播放| 日韩三级av高清片| 91一区在线| 久久影院一区二区三区| 爽成人777777婷婷| 亚洲人亚洲人色久| 日韩不卡一区| 日韩欧美中文字幕在线视频| 欧美freesextv| 日本一不卡视频| 91亚洲国产高清| 91国内精品| 日韩精品麻豆| 精品久久中文| 欧美在线高清| 欧美 亚欧 日韩视频在线| 久久精品男女| 99热这里只有精品8| 中文字幕免费精品| 免费国产亚洲视频| 日韩欧美中文字幕一区二区三区| sm捆绑调教国产免费网站在线观看| 精品中文字幕一区二区三区| 91欧美在线| 成人在线亚洲| 久久国产生活片100| 亚洲精品极品少妇16p| 欧美激情综合色综合啪啪| 西西裸体人体做爰大胆久久久| 国语精品视频| 极品视频在线| 91精品国产自产拍在线观看蜜| 久久精品国产网站| 一本色道精品久久一区二区三区| 国产欧美日韩一区二区三区四区| 91一区二区三区四区| 好吊日精品视频| 91精品1区| 日韩成人高清| 黑丝美女一区二区| 综合久久婷婷| 国产精品黑丝在线播放| 成人性生交大片免费看96| 日日嗨av一区二区三区四区| 亚洲一卡久久| 99热这里只有精品首页 | 国产传媒在线观看| 国产图片一区| 欧美激情视频一区二区三区免费| 色小子综合网| 久久精品官网| 色综合综合网| 精品久久福利| 国产精品婷婷| 精品伊人久久久| 99精品女人在线观看免费视频| 国产h片在线观看| 天天影视天天精品| 一区二区三区在线资源| 日本v片在线高清不卡在线观看| 人人狠狠综合久久亚洲| 99国产**精品****| 亚洲人成网77777色在线播放| 成人在线高清| 色喇叭免费久久综合| 欧美裸体在线版观看完整版| 日韩不卡在线视频|