加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做Project 1: 3D printer materials estimation

時間:2024-02-27  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:self-signed certificate.代做、代寫Java/c++設計編程
  • 下一篇:代做CSE 6242、Java/c++編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    av免费不卡| 国产主播性色av福利精品一区| 久久最新视频| 日韩一区二区三区精品| 亚洲国产91| 久久都是精品| 亚洲成人二区| 亚洲丝袜美腿一区| 国产日韩欧美一区在线| 男女男精品视频网| 亚洲高清激情| 美女久久精品| 欧美欧美在线| 久久精品国产亚洲aⅴ| 香蕉久久久久久久av网站| 少妇精品导航| 日韩av不卡一区二区| 毛片一区二区三区| 日韩毛片视频| 久久亚洲图片| 欧美精品九九| 精品国产午夜肉伦伦影院| 亚洲欧洲色图| 亚洲一区av| 欧美亚洲三级| 亚洲a成人v| 日韩成人综合| 色婷婷色综合| 亚洲视频播放| 国产韩国精品一区二区三区| 国偷自产av一区二区三区| 亚洲婷婷伊人| 91精品福利观看| 麻豆91在线观看| 欧美一区二区三区免费看| 日韩国产一区| 最新中文字幕在线播放| 免费久久99精品国产自在现线| 激情综合网五月| 91精品国产自产拍在线观看蜜| 69精品国产久热在线观看| 欧美欧美黄在线二区| 午夜亚洲福利| 国内精品亚洲| 亚洲精品资源| 一区二区不卡| 高清不卡一区| 国产精品亚洲一区二区在线观看| 国产精品xvideos88| 影音先锋亚洲电影| 亚洲精品乱码| 国产精品va视频| 99久久99九九99九九九| 亚洲欧洲一二区| 懂色av色香蕉一区二区蜜桃| 中文成人在线| 精品一区二区三区中文字幕在线 | 欧美一区免费| 日韩美女在线| 免费在线成人| 另类小说一区二区三区| 国内精品久久久久久久影视蜜臀 | 久久在线观看| 日韩av一二三| 亚洲精品不卡在线观看| 国产一区丝袜| 亚洲第一区色| 狠狠色狠狠色综合日日tαg| 女人香蕉久久**毛片精品| 欧美女激情福利| 午夜在线一区| 久久久久看片| 精品免费av一区二区三区| 国产a亚洲精品| 亚洲另类视频| 亚洲伊人春色| 国产精品极品| 国内精品福利| 久久不射网站| 蜜桃视频在线网站| 日韩精品乱码av一区二区| 99久久999| 9国产精品午夜| 欧美1级日本1级| 免费视频一区二区| 国产一区二区三区黄网站| 亚洲精品人人| 日韩高清影视在线观看| 开心激情综合| 亚洲欧美日韩视频二区| 精品极品在线| 亚洲九九精品| 欧美视频四区| 亚洲激情精品| 日韩在线观看| 亚洲日韩中文字幕一区| 亚洲成人影音| 午夜欧美理论片| 日韩国产欧美| 一区在线不卡| 久久久久久久久久久9不雅视频| 亚洲一区一卡| 少妇高潮一区二区三区99| 国产成人ay| 亚洲高清av| 天堂中文av在线资源库| 欧美日韩亚洲三区| 高清日韩中文字幕| 久久福利毛片| 久久中文欧美| 国产精品22p| 视频一区国产视频| 麻豆精品新av中文字幕| 亚洲精品不卡在线观看| 中文一区在线| 欧美成人免费全部网站| 精品精品视频| 亚洲美女网站| 国产欧美三级| 黄色欧美在线| 色琪琪久久se色| 亚洲三级国产| 亚洲高清激情| 日韩精品免费观看视频| 日韩深夜福利| 裸体素人女欧美日韩| 麻豆精品国产91久久久久久| 欧美三区视频| 91麻豆精品国产91久久久平台| 综合久久一区| 香蕉av一区二区 | 麻豆中文一区二区| 99精品电影| 精品免费av在线| 日韩免费精品| 国产高潮在线| 色棕色天天综合网| 在线视频亚洲| 亚洲区综合中文字幕日日| 久久精品国产99久久| 亚洲精品国产嫩草在线观看| 日韩一级淫片| 激情国产在线| 中文字幕av一区二区三区四区| 蜜桃视频在线一区| 少妇精品久久久一区二区三区| 日韩视频一区二区三区在线播放免费观看| 美女视频一区在线观看| 欧美中文字幕一区二区| 国产精品黄色片| 国内精品视频在线观看| 欧美黄色网络| 欧美偷拍综合| 青青草伊人久久| 91久久电影| 久久久久97| 国产精品日本欧美一区二区三区| 综合一区在线| 日韩在线a电影| 日本高清久久| 欧美日韩国产v| 亚洲91久久| 免费亚洲婷婷| 影院欧美亚洲| 亚洲欧美校园春色| 欧美一级鲁丝片| 精品高清久久| 国产欧美在线| 中文亚洲字幕| 日韩av综合| 精品国产欧美日韩一区二区三区| 久久三级视频| 欧美日韩一区二区国产| 视频精品二区| 日韩欧美网站| 日本一区二区三区电影免费观看| 超碰高清在线| 国产精品xxxav免费视频| 国产精品一二| 亚洲一区黄色| 一区二区免费| 一区二区三区精品视频在线观看| 女人香蕉久久**毛片精品| 亚洲欧洲二区| 少妇淫片在线影院| 亚洲小说欧美另类社区| 亚洲最大黄网| 国产精品久久久久无码av| 国产精品极品| 欧美人成在线| 91蜜臀精品国产自偷在线| 精品久久电影| 亚洲中无吗在线| 在线看片福利| 久久一区二区三区喷水| 久久不见久久见免费视频7| 蜜桃av在线播放| 在线观看国产精品入口| 天堂精品在线视频| 日本伊人精品一区二区三区观看方式|