加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MATH60026、Python程序設計代做

時間:2024-02-22  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Department of Mathematics
MATH60026 - MATH70026
Methods for Data Science
Years 3/4/5
Coursework - General instructions - please read carefully
The goal of this coursework is to analyse datasets using several tools and algorithms introduced in the lectures,
which you have also studied in detail through the weekly Python notebooks containing the computational tasks. You
will solve the tasks in this coursework using Python, hence competent Python code is expected.
You are allowed to use:
- Python code that you have developed in your coding tasks;
- any other basic mathematical functions contained in numpy;
- pandas to build and clean up data tables;
- tqdm as a utility to visually track the progress of for-loops.
You are not allowed to use:
- any model-level or automatic differentiation Python packages (e.g., scikit-learn, statsmodels, PyTorch, JAX,
Tensorflow/Keras, etc);
- ready-made code found anywhere online;
- conversational AI tools such as ChatGPT, Microsoft Bing, GitHub Copilot etc. to generate code and written
answers.
Needless to say, your submission must be your own individual work: You may discuss the analysis with your
colleagues but code, written answers, figures and analysis must be written independently on your own. The
Department uses code profiling and tools such as Turnitin to check for plagiarism of any sort. Plagiarism is a
major form of academic misconduct.
Marks
This coursework is worth 40% of your total mark for the course.
Mastery component: The mastery component amounts to 20% of this CW: two tasks (1.1.3 and 1.2.3) have
one version for 3rd year BSc students only and one version for MSc and 4th year MSci students only (Mastery
component) - pay attention to this and choose the right option in each of those tasks! You should only answer the
version that applies to your case.
Some general guidance about writing your solutions and marking scheme:
Coursework tasks are different from exams. Sometimes they can be more open-ended and may require going
beyond what we have covered explicitly in lectures. In some parts, initiative and creativity will be important, as is the
ability to pull together the mathematical content of the course, drawing links between subjects and methods, and
backing up your analysis with relevant computations that you will need to justify.
To gain the marks for each of the Tasks you are required to:
(1) complete the task as described;
(2) comment any code so that we can understand each step;
(3) provide a brief written introduction to the task explaining what you did and why you did it;
(4) provide appropriate, relevant, clearly labelled figures documenting and summarising your findings;
(5) provide a relevant explanation of your findings in mathematical terms based on your own computations and
analysis and linking the outcomes to concepts presented in class or in the literature;
(6) consider summarising your results with a judicious use of summary tables of figures.
The quality of presentation and communication is very important, so use good combinations of tables and
figures to present your results, as needed. Explanation and understanding of the mathematical concepts are crucial.
Marks will be reserved and allocated for: presentation; quality of code; clarity of arguments; explanation of choices
made and alternatives considered; mathematical interpretation of the results obtained; as well as additional relevant
work that shows initiative and understanding beyond the task stated in the coursework.
When you comment on your results, precise pointers to your code and your plots must be provided: generic,
boiler-plate comments on a method that are not based on the specific problem and the analysis carried out by you
will receive zero marks.
Similarly, the mere addition of extra calculations (or ready-made 'pipelines') that are unrelated to the task without a
clear explanation and justification of your rationale will not be beneficial in itself and, in fact, can also be detrimental
to the mark if it reveals lack of understanding of the required task.
Submission
For the submission of your coursework, you need to save two documents:
● a Jupyter notebook (file format: ipynb) with all your tasks clearly labelled. You should use the template
notebook called CID_Coursework1.ipynb provided on Blackboard (folder ‘Coursework/Coursework 1’). The
notebook should have clear headings to indicate the answers to each question, e.g. ‘Task 1.1’.
The notebook should contain the cells with your code and their output, plus some brief text explaining your
calculations, choices, mathematical reasoning, and discussion of results. (Important: Before submitting you
must run the notebook, and the outputs of the cells must be printed. Having all cells executed sequentially
is a way of showing to us that your notebook correctly produces the displayed output. The absence of this
output will be penalised). You can use Google Colab or develop your Jupyter notebook through the
Anaconda environment (or any local Python environment) installed on your computer.
● Once you have executed all cells in your notebook and their outputs are printed, you should save the
notebook as an html file (with name CID_Coursework1.html). Your ipynb file must produce all the output
that appears in your html file, i.e., make sure you have run all cells in the notebook before exporting the
html.
The submission is done online via Blackboard, using the drop boxes inside the folder ‘Coursework’ on
Blackboard.
The deadline is Friday, 23 February 2024 at 1 pm.
The submission of your coursework must consist of two items, to upload separately:
1) A single zip folder containing your Jupyter notebook as an ipynb file and your notebook exported
as an html file. Name your zip folder ‘CID_Coursework1.zip’, where CID is your student CID, e.g.
123456_Coursework1.zip.
2) The html file, named CID_Coursework1.html, which will be used for the plagiarism check.
The submission should consist only of these 2 items - Do not submit multiple files.
Important note: Make sure you submit to the right drop box on Blackboard
● If you are a 3rd year BSc student: use the ‘Coursework Drop Boxes’ inside the folder ‘Coursework’. The
html file must be uploaded to ‘Coursework 1 Drop Box Spring 24 - HTML’, the zip folder must be uploaded
to ‘Coursework 1 Drop Box Spring 24 - ZIP’.
● If you are a 4th year MSci or MSc student: use the ‘Mastery Coursework Drop Boxes’ inside the folder
‘Coursework’. The html file must be uploaded to ‘Coursework 1 Drop Box Spring 24 - Mastery HTML’, the
zip file to ‘Coursework 1 Drop Box Spring 24 - Mastery ZIP’.
Any mistake in the submission folder will cause a delay in the release of your mark. Do not put your name on the
files you submit (only the CID), because the marking must be carried out preserving your anonymity.
Notes about online submissions:
● There are known issues with particular browsers (or settings with cookies or popup blockers) when
submitting to Turnitin. If the submission 'hangs', please try another browser.
● You should also check that your files are not empty or corrupted after submission.
● To avoid last minute problems with your online submission, we recommend that you upload versions of
your coursework early on, before the deadline. You will be able to update your coursework until the
deadline, but having this early version provides you with some safety backup. For the same reason, keep
backups of your work, e.g. save regularly your notebook with its outputs as an .html file, which can be
useful if something unpredicted happens just before the deadline.
● If you have any issue with the submission, or you realise you have submitted your work to the wrong drop
box, please contact directly the UGMathsOffice at maths-student-office@imperial.ac.uk or your MSc
programme administrator, in such a way that they can help you solve the issue.
● If you need an extension, or happen for any reason to submit your work late, please make a request for
mitigating circumstances directly on ZINC.
For these last two points, do not contact us - we, as lecturers, are not able to grant extensions nor to
make changes in the submission folders! We only get to see anonymised submissions.
Coursework 1 – Supervised learning
Submission deadline: Friday, 23 February 2024 at 1 pm
Coursework
In this coursework, you will work with two different datasets of relatively high-dimensional samples:
● an engineering dataset measuring different properties of graphene-based supercapacitors
● a medical dataset used for the diagnosis of brain cancer
You will perform a regression task with the former, and a classification task with the latter. All datasets are made
available inside the folder ‘Coursework/Coursework 1/Data’ on Blackboard.
Task 1: Regression (50 marks)
Dataset: Your first task deals with an engineering dataset. It contains the design properties (our data features or
descriptors) of graphene-based electrodes, and each set of features is associated to a resultant electrical capacity.
Graphene-based electrodes are a promising alternative for electricity storage, but we still lack understanding of
what contributes to its capacitive properties. Each of the 558 samples in the dataset (rows) corresponds to a
graphene-based electrode, described by 12 design properties (like surface area, electrolyte concentration, etc —
each of them measured with appropriate units of measure, see the columns). We will consider the resultant
electrical capacity (column ‘Capacitance (µF/cm²)’) as the target variable to regress, while the other 12 variables are
our features.
● This dataset is made available on Blackboard as nanoelectrodes_capacitance_samples.csv.
● We also provide on Blackboard a test set in the file nanoelectrodes_capacitance_test.csv.
Important: The test set should not be used in any learning, either parameter training or hyperparameter tuning of
the models. The test set should be put aside and only be used a posteriori to support your conclusions and to
evaluate the out-of-sample performance of your models. Only the dataset
nanoelectrodes_capacitance_samples.csv should be used for the cross-validation tasks, where you will
be in charge of choosing an appropriate set of hyperparameter values (at least 5 values per hyperparameter) to
scan. If you wish to standardise the dataset, please use the convention by which we use mean and standard
deviation of the training set to standardise the test set, as discussed in the lecture.
Questions:
1.1 Random Forest (20 marks)
1.1.1 (5 marks) - Train a Decision Tree regression model to predict the electrical capacity from the 12
features. Use the following hyperparameters: max_depth=10, min_samples_leaf=10. Evaluate
the generalisation power of the Decision Tree on the test set using the Mean Squared Error (MSE) and
R² score as your metrics of performance. Discuss your findings.
1.1.2 (5 marks) - Perform bagging and feature bagging starting from the Decision Tree structure of task
1.1.1 to construct a Random Forest regression model to predict the electrical capacity. Use the standard
rule-of-thumb to determine the number of features for feature bagging, while you need to find the
optimal value of B (the number of trees) by 5-fold cross-validation using the MSE of the Random Forest
as performance metric. Using the MSE and R² score, evaluate the generalisation power of the Random
Forest on the test set and compare it to the one of a single Decision Tree (task 1.1.1) and to the one of
the ensemble of B Decision Trees alone (without feature bagging). Discuss your findings.
1.1.3 (10 marks, BSc students only) - Search for optimal values of max_depth,
min_samples_leaf (keeping B fixed) for the Random Forest of task 1.1.2 by 5-fold cross-validation
using the MSE as metric. Evaluate the performance of the Random Forest with these optimal
hyperparameters on the test set using the MSE and R² score, and compare it to the results from task
1.1.2. Next, use the Out-Of-Bag (OOB) samples from bagging to estimate the importance factors of
each feature, using the MSE as performance metric. Express them as a percentage of the most
important feature, plot them and draw conclusions about which data features contribute the most to the
prediction of electrical capacity.
1.1.3 (10 marks, MSc/4th-year students only) - As introduced in the lectures, build a Gradient
Boosted Decision Tree (GBDT) regression model trained over 50 iterations (weak learners) with a
learning rate equal to 0.4 and optimise the GBDT model over the hyperparameters max_depth and
min_samples_leaf of the weak learners via 5-fold cross validation, with the MSE as performance
metric. Evaluate the performance of the GBDT model on the test set using the MSE and R² score and
compare your results to the performance of the models from tasks 1.1.1 and 1.1.2.
1.2 Multi-layer Perceptron (30 marks)
1.2.1 (10 marks) - Using NumPy alone like in your Week 5 notebook (i.e., without using
TensorFlow/Keras, PyTorch or equivalent libraries), implement a Multi-Layer Perceptron (MLP) to
perform regression according to the following architecture description:
Architecture of the network: Your network should have an input layer, 2 hidden layers (with 50 neurons
each), followed by the output layer with one neuron (the outcome variable to predict). For both hidden
layers, apply the following activation function:
Use mini-batch stochastic gradient descent (SGD) as your optimisation method and the MSE as your
loss function.
Train the MLP on the training set using mini-batches of 8 data points for 300 epochs and setting the
learning rate to 5 × 10 . Plot the loss as a function of the number of epochs for both the training and
−5
test sets to demonstrate convergence. Evaluate the generalisation power of the trained MLP on the test
set by measuring the MSE and R² score.
1.2.2 (10 marks) - Use a different optimiser to train the MLP from task 1.2.1: use SGD with momentum.
Use mini-batches of 8 data points for 300 epochs, set the learning rate to 5 × 10 and the momentum
−5
parameter to 0.4. Evaluate the MSE on the training and test sets, and discuss the effect of
momentum on model training and performance compared with the MLP from task 1.2.1. Compare the
model performance on the test set achieved here to the MLP from task 1.2.1 and to the Random Forest
from task 1.1.2, drawing a conclusion on which model performs best.
1.2.3 (10 marks, BSc students only) - Compare the MLP to another simpler approach to include some
non-linearities in the regression task under consideration. Perform what is called linear regression with
quadratic basis functions: extend your set of 12 features to a set containing also the quadratic terms,
i.e., the squares of features and the products of different features. The extended set of features is
given by:
Use this extended set of features to implement Ridge linear regression to predict the electrical
capacity. First, perform Ridge regression with , , and plot the distribution of
the inferred coefficients for these 3 values of . Explain and justify the trends you see. Next, find the
optimal penalty using 5-fold cross-validation. Next, compare the performance of this model (given by
the MSE and R² score on the test set) to linear regression on the 12 original features: here, implement
linear regression with and without Ridge penalty, finding the optimal Ridge penalty by 5-fold
cross-validation.
1.2.3 (10 marks, MSc/4th year students only) - Nesterov’s Accelerated Gradient (NAG) is closely
related to SGD with momentum. In this research article by Sutskever et al. 2015 (also available on
Blackboard), it was found that it can outperform SGD with momentum, when used in conjunction with
well-designed parameter initialisations and a schedule for the momentum parameter. Repeat this
comparison in the case of your MLP regression model (task 1.2.1). Specifically, implement the NAG
introduced in section 2 of Sutskever et al. 2015; implement it with the iteration-dependent schedule for
the momentum parameter here called (section 3), and use the sparse initialisation (section 3.1) that
the authors used for their experiments with deep autoencoders. To keep your experiment focussed on
the schedule for , set the learning rate to 5 × 10 . Choose a minibatch size of 8. Using the MSE on
−6
the training set to evaluate performance, draw conclusions on the performance of NAG in this context,
comparing it to that of SGD with momentum (task 1.2.2).
Task 2: Classification (50 marks)
Dataset: Your second task involves working with a dataset designed for the diagnosis of brain cancer that uses
characteristics of a scanned lump, including its density, diameter, and the specific region in the brain where it is
located. The brain cancer diagnosis corresponds to a classification task, since the characteristics detected through
imaging allow one to predict a benign tumour (‘Class=0’) or malignant types glioma (‘Class=1’) and meningioma
(‘Class=2’) . The other 11 columns correspond to the data features to use for training the classifier.
● The dataset is available on Blackboard in the file brain_cancer_samples.csv.
● The test set is in the file brain_cancer_test.csv.
Important: The test set should not be used in any learning, either parameter training or hyperparameter tuning of
the models. The test set should be put aside and only be used a posteriori to support your conclusions and to
evaluate the out-of-sample performance of your models. Only the dataset brain_cancer_samples.csv should
be used for the cross-validation tasks, where you will be in charge of choosing an appropriate set of
hyperparameter values (at least 5) to scan. If you wish to standardise the dataset, please use the convention by
which we use mean and standard deviation of the training set to standardise the test set, as discussed in the
lecture.
Questions:
2.1 k-Nearest Neighbours (25 marks)
2.1.1 (10 marks) - Train a k-Nearest Neighbour (kNN) classifier of the tumour type (with classes 0, 1, 2),
using 5-fold cross-validation to find an optimal value of k, and assess its performance on the test set.
Use the micro-averaged accuracy as the metric when evaluating the performance in cross-validation
and on the test set.
The training set is an example of an imbalanced dataset, i.e., one class is under-represented. Identify
the minority class, next calculate the macro-average, micro-average and class-weighted average of
accuracy and precision, and use these six metrics to assess whether the kNN classifier correctly
predicts the minority class, justifying your answer. (In a class-weighted average, the weights are the
class frequencies, which then multiply the class-wise metric).
2.1.2 (7 marks) - Design a weighted version of kNN to improve the prediction of the minority class. In
this weighted kNN, each data point needs to be reweighted appropriately when computing the predicted
class by majority vote. Explain your choice of the reweighting strategy. Use the same k as in Task 2.1.1.
Calculate the macro- and micro-average of accuracy and precision, and discuss your findings making a
direct comparison with the results from task 2.1.1.
2.1.3 (8 marks) - To investigate the model’s ability to discriminate cancer diagnoses (classes 1 and 2),
implement a 2-step kNN as follows. First, reformulate the previous classification task as a binary
classification task, where the two classes are ‘benign tumour diagnosis’ (class 0) and ‘malignant tumour
diagnosis’ (classes 1 and 2 combined). Train a kNN model for this binary classification task with the
same k as in task 2.1.1. Next, use class 1 and class 2 data to train another kNN model for the
subsequent binary classification between class 1 and class 2, setting k=1. Then use these two kNN
binary models to predict which of the test data points belong to class 0, class 1 and class 2, thus
performing a 2-step binary classification for the original three-class classification problem. Measure the
performance on the test set of this 2-step kNN by calculating again the macro- and micro-average of
accuracy and precision. Explain your findings making a direct comparison with the results from tasks
2.1.1 and 2.1.2.
2.2 Logistic regression vs kernel logistic regression (25 marks)
2.2.1 (10 marks) - Start from the formulation of the classification problem as a binary classification task
(‘benign tumour diagnosis’ vs ‘malignant tumour diagnosis’). For this binary classification task, train a
penalised logistic regression model specified by the following loss function:
where the term containing the hyperparameter is a Ridge-like penalty term on the magnitude of
(note that it does not include the intercept). Set = 0.0025 and initialise and with zeros. Train the
model using gradient descent with learning rate = 0.1 and evaluate its performance on the test set via
the Precision-Recall curve and the area under this curve (AUC-PR).
2.2.2 (10 marks) - Formulate the kernelised version of the logistic regression model from task 2.2.1,
using the Laplacian kernel:
Construct and write down explicitly the appropriate loss function. Comment on whether optimising this
loss is a convex optimisation problem, justifying mathematically your answer.
2.2.3 (5 marks) - Train the kernel logistic regression model from task 2.2.2 via gradient descent, using
the same values of and learning rate as in task 2.2.1, and setting the kernel’s parameter to: α = 100
and α = 0.3. Evaluate the model’s performance for both values of α on the test set, using the
Precision-Recall curve and AUC-PR, and compare the performance to the one of penalised logistic
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:莆田鞋一手貨源最低價,莆田鞋一手貨源售價一覽表
  • 下一篇:代做Biological Neural Computation、Python/Java程序語言代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    蜜桃av一区| 亚洲1区在线| 日本激情一区| 精品不卡一区| 亚洲一区二区三区久久久| 欧美freesextv| 欧美va天堂| 亚洲3区在线| 99国内精品久久久久| 日韩在线不卡| 尹人成人综合网| 精品国产乱码久久久久久果冻传媒| 日韩和欧美的一区| 亚洲精品国产精品国产| 欧美日韩激情| 国产伦理久久久久久妇女 | 免费观看成人www动漫视频| 你懂的网址国产 欧美| 国产精品99久久久久久董美香 | 亚洲少妇视频| 国产亚洲一区在线| 久久香蕉国产| 国产福利资源一区| 亚洲免费毛片| 欧美国产三区| 久久在线91| 国产一区二区高清在线| 欧美残忍xxxx极端| 亚洲欧美卡通另类91av| 91高清一区| 欧美综合另类| 精品免费视频| 91精品久久久久久综合五月天| 国产精品亚洲欧美一级在线| 国产精品亚洲产品| 色999韩欧美国产综合俺来也| 日韩一区欧美二区| 裸体素人女欧美日韩| 夜夜夜久久久| 亚洲美女网站| av成人激情| 夜夜夜久久久| 美女诱惑黄网站一区| 99热这里只有成人精品国产| 国户精品久久久久久久久久久不卡| av成人综合| 精品国产三区在线| 日韩在线观看一区二区三区| 欧美男gay| 国产影视一区| 日韩手机在线| 清纯唯美激情亚洲| 国产精品成人自拍| 色婷婷精品视频| 久久久久综合| 国产尤物精品| 在线视频日韩| 日本欧美在线观看| 日韩aaaa| 中文另类视频| 久久精品超碰| 麻豆极品一区二区三区| 亚洲久久成人| 国产一区二区三区日韩精品 | 视频一区视频二区中文| 欧美国产美女| 日韩伦理视频| 国产日韩高清一区二区三区在线| 日韩亚洲国产免费| 亚洲美女色禁图| 精品一区二区三区视频在线播放| 国产精品视频首页| 精品国产三区在线| 久久精品一区二区不卡| 在线精品国产| 欧美bbbbb| 青青在线精品| 在线观看视频日韩| 日产欧产美韩系列久久99| 国产极品模特精品一二| 欧美码中文字幕在线| 久久aⅴ乱码一区二区三区| 国产亚洲成av人片在线观看| 国产69精品久久久久9999人| 日本不卡高清视频| 亚洲aa在线| 精品久久成人| 国产精品丝袜xxxxxxx| 色狮一区二区三区四区视频| 亚州精品国产| 成人精品在线| 欧美激情99| 一本色道久久| 性欧美videohd高精| 中文不卡在线| 99精品国产一区二区三区2021| 欧洲grand老妇人| 国产精品国内免费一区二区三区| 国产欧美在线观看免费| 欧美美乳视频| 激情五月综合网| 亚洲人体视频| 综合久久久久| 欧美色综合网| 国产精品嫩草99av在线| 日本美女久久| 亚洲自拍都市欧美小说| 免费av一区二区三区四区| 日产午夜精品一线二线三线| 秋霞影视一区二区三区| 一本色道精品久久一区二区三区| 蜜桃av噜噜一区二区三区小说| 麻豆国产精品官网| 尤物在线精品| 中文在线аv在线| 日韩精品五月天| 欧美交a欧美精品喷水| 三级在线观看一区二区| 国产日韩一区二区三区在线播放| 综合干狼人综合首页| 九九久久电影| 日韩黄色在线| 精品视频免费| 欧美残忍xxxx极端| 欧美日韩午夜电影网| 蜜桃精品噜噜噜成人av| 四虎4545www国产精品| 亚洲精品一级二级三级| 国产精品丝袜xxxxxxx| 老司机免费视频一区二区 | 一本色道久久综合亚洲精品不卡| 欧美日本中文| 久久婷婷丁香| 成人国产一区二区三区精品麻豆| 亚洲另类春色校园小说| 亚洲综合不卡| 成人噜噜噜噜| 亚洲少妇一区| 久久悠悠精品综合网| 不卡中文字幕| 日韩精品亚洲专区| 欧美日韩国产高清电影| 免费亚洲视频| 国模一区二区三区| 欧美激情不卡| 99久久久久| 久久狠狠亚洲综合| 久久久久久黄| 久久精品亚洲一区二区| 欧美亚洲国产一区| 日韩综合一区二区| 不卡在线一区二区| 9999在线精品视频| 乱码第一页成人| 国产亚洲欧美日韩在线观看一区二区 | 久久动漫亚洲| 亚洲人成精品久久久| 免费看日韩精品| 日韩欧美一级| 成人av观看| 精品免费视频| 久久精品伊人| 模特精品在线| 国产免费av国片精品草莓男男| 裤袜国产欧美精品一区| 97青娱国产盛宴精品视频| 亚洲综合av一区二区三区| 久久在线免费| 成人日韩视频| 校园春色亚洲| 一区二区三区视频免费观看| 日本91福利区| 免费视频一区二区| 欧美日韩网址| 青青国产91久久久久久| 伊人狠狠色j香婷婷综合| 亚洲精品蜜桃乱晃| 免费高清视频在线一区| 天天做综合网| 香蕉国产成人午夜av影院| 电影天堂国产精品| 欧美成人69av| 亚洲自拍都市欧美小说| 日韩专区精品| 欧美午夜不卡影院在线观看完整版免费| 亚洲色图国产| 日韩午夜电影网| 欧美日韩国产高清电影| 日韩精品成人在线观看| 久久女人天堂| 免费高清视频精品| 久久高清精品| 怕怕欧美视频免费大全| 深夜福利亚洲| 国产精品99在线观看| 激情久久一区| 日韩欧美中文在线观看| 亚洲人www| 亚洲啊v在线| 国产日韩综合|