加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫MLDS 421: Data Mining

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯


Individual Assignment (100 points)

Instructions:

• Submit the paper review as a word or pdf file.

• Submit code as a Python notebook (.ipynb) file along with the HTML version.

• Write elegant code with substantial comments. If you have referred to or reused code from a website add the links as reference.

1. Paper Review – Following the guidelines review any one of the technical papers from Group2 (20)

2. Generate random multidimensional (n=1000, D >= 15) data using sklearn. (20)

• Build a K-means function from scratch (without using sklearn) and make assumptions to simplify the code as needed.

• Use the elbow method to find an appropriate value for k

• Use the silhouette plot to evaluate your clusters

• Re-cluster the data to see if you can improve your results

• Perform PCA on the original dataset and retain the most important PCs.

• Run K-means on the PCA output, compare results with respect to cluster quality and time taken

3. Using the data from 2, perform hyperparameter optimizations of the following clustering algorithms. (20)

• Agglomerative hierarchical clustering (number of clusters, linkage criterion)

• Density-based clustering (DBSCAN) (eps, minPts)

• Model-based clustering (GMM) (number of clusters)

4. Data mining and Cluster analysis of the following dataset (40)

https://data.cdc.gov/NCHS/NCHS-Injury-Mortality-United-States/vc9m-u7tv/about_data

The dataset contains the number of injury deaths per year by different injury intents from years 1999 to 2016 in the US. There are different groupings by age group, gender, race, and injury intent.

As a data science consultant, your goal is to mine the dataset and extract meaningful insights for your clients in the health care industry. The course of action is as follows:

• Review and understand the structure of the data.

o Columns are year, sex, age group, race, injury mechanism, injury intent, deaths, population, age specific rate, and the statistics of age specific rate

• Data Transformation

o For each year, group by age group, sex, or race and summarize data as needed for subsequent analysis.

• Exploratory Data Analysis (10)

o Create statistical summaries.

o Create boxplots, correlation/pairwise plots.

o Perform basic outlier analysis.

• Clustering (15)

o In a few lines create a plan that describes the 3-4 questions that are suitable for cluster analysis.

o List the various clustering algorithm(s) you’d use and why:

o E.g., K-means, K-medians, K-modes, Hierarchical methods, DBSCAN, etc.

o Apply the above algorithms to the filtered dataset based on your plan.

o Report on the quality of the clusters, pros/cons, and summarize your findings.

• Bias/Fairness Questions (15)

Data

o In the dataset under study, from a bias/fairness (b/f) perspective, there are 2 sensitive features: race and gender.

o Analyze the data by a combination (2) of features (sensitive and other). Example features to include in the analysis: location (county, state), and other features you consider relevant. Though these features may not be considered sensitive they can be a proxy for sensitive features.

o Determine feature groupings that are relevant for your analysis and explain your choices.

o Do you detect bias in the data?

o Present the results visually to show salient insights with respect to bias.

o Based on the EDA and your project objective, develop a hypothesis about where b/f issues could arise in the modeling (cluster analysis).

Modeling

o Based on your hypothesis, assess the fairness of your model/analysis by applying the fairness-related metrics that are available in any of the following tools: Python Fairlearn package, R Fairness/Fairmodels package, or other similar tools.

o Explain the reasoning for the groups that you selected for the fairness metrics.

o Compare the fairness metrics for the different groups.

o If you developed multiple models compare the fairness metrics for the models.

o Comment on the results.

o Suggest how the bias/fairness issues could be mitigated.

o Present the results visually to show salient insights.

Note: In the Fall Quarter you attended lectures on Bias/Fairness. Additionally, the following is a useful resource for analyzing b/f in data and modeling: Fairness & Bias Metrics
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫 Behavioural Economics ECON3124
  • 下一篇:代寫COMP1721、代做java程序設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    国产精品香蕉| 偷拍中文亚洲欧美动漫| 精品国产亚洲一区二区三区大结局| 三级在线观看视频| 亚洲特色特黄| 日韩av网址大全| 国产日韩欧美一区在线| 石原莉奈一区二区三区在线观看| 六月丁香久久丫| 久久不见久久见国语| 久久精品麻豆| 亚洲播播91| 日韩精品一级二级| 国模吧视频一区| jizz性欧美2| 国产激情综合| 欧美aa在线视频| 精品日韩视频| 日韩精品一二三| 亚洲精品午夜av福利久久蜜桃| 亚洲2区在线| 国产精品毛片aⅴ一区二区三区| 日本精品另类| 色135综合网| 免播放器亚洲| a91a精品视频在线观看| 亚洲高清成人| 久久激情av| 久久天堂久久| 亚洲区小说区图片区qvod| 欧美激情 亚洲a∨综合| 美女精品一区二区| 国产激情久久| 先锋欧美三级| 日韩中文在线电影| www.精品| 黑人巨大精品欧美一区二区桃花岛 | 88xx成人免费观看视频库| 国产韩日影视精品| 久久美女视频| 99精品综合| 久久精品国语| 999久久久亚洲| 99国内精品久久久久久久| 成人综合专区| 嗯用力啊快一点好舒服小柔久久| 麻豆极品一区二区三区| 久久精品国内一区二区三区| 91福利精品在线观看| 99久久伊人| 成人午夜一级| 日本一区二区三区中文字幕| 久久精品97| 久久精品麻豆| 欧美日韩亚洲一区在线观看| 在线国产精品一区| 综合久久伊人| 国产精品视频一区二区三区| 国产欧美日韩在线观看视频| 色综合综合网| 综合成人在线| 精品久久ai| 美女毛片一区二区三区四区| 一本色道久久综合亚洲精品不| av亚洲免费| 玖玖视频精品| 日韩免费看片| 一区二区福利| 韩国三级成人在线| 日韩影片在线观看| 亚洲a在线视频| 亚洲欧洲一区| 黄色亚洲网站| 久久激情五月婷婷| 亚洲色图图片| 99re91这里只有精品| 亚洲福利精品| 另类图片国产| 日本欧美一区| 亚洲国产午夜| 视频亚洲一区二区| 伊人春色之综合网| 免费xxxx性欧美18vr| 日产精品一区| 国产精品分类| 一区视频网站| av一区二区高清| 日本黄色精品| 日日夜夜免费精品| 久久99视频| 成人精品天堂一区二区三区| 中文精品在线| 蜜桃视频www网站在线观看| 青青草97国产精品免费观看| 亚洲系列另类av| 激情综合网站| 日韩在线观看电影完整版高清免费悬疑悬疑| 91在线成人| 美女精品一区最新中文字幕一区二区三区 | 久久久久久一区二区三区四区别墅| 国产一区二区三区黄网站| 国语对白精品一区二区| 嫩呦国产一区二区三区av| 婷婷综合在线| 69堂免费精品视频在线播放| 国产精品视频一区视频二区| 精品国产美女| 免费欧美在线| 久久精品女人| 欧美视频亚洲视频| 快she精品国产999| 久久一区精品| 国产精品流白浆在线观看| 老鸭窝91久久精品色噜噜导演| 日本午夜精品久久久久| 亚洲涩涩av| 亚洲免费一区二区| 欧美一级久久| 亚洲不卡av不卡一区二区| 国产免费拔擦拔擦8x高清在线人| 日本美女一区二区| 久久伦理在线| 日韩不卡视频在线观看| 日本精品视频| 日本一本不卡| 国精一区二区| 亚洲女同同性videoxma| 日本vs亚洲vs韩国一区三区| 四虎影视精品| 欧产日产国产精品视频| 久久亚洲精精品中文字幕| 视频一区二区欧美| 99久久99九九99九九九| 精品欧美久久| 一区二区日本视频| 久久国产直播| 国产激情久久| 99视频精品全部免费在线视频| 97se综合| 日韩一区免费| 亚洲精品福利电影| 日韩av一级片| 国产高潮在线| 88久久精品| 日韩专区精品| 欧美一区二区三区久久| 精品日韩视频| 色婷婷综合久久久久久| 日韩另类视频| 99精品小视频| 麻豆91在线看| 狠狠爱www人成狠狠爱综合网| 久久精品免费| 99国产精品私拍| 国产一区二区三区不卡视频网站 | av影院在线免费观看| 日韩av高清在线观看| 综合日韩av| 91精品一区二区三区综合在线爱| 涩涩涩久久久成人精品| 激情一区二区| 国产精品成人**免费视频| 蜜臀av性久久久久蜜臀aⅴ | 亚洲欧美视频| 日韩电影在线观看网站| 亚洲伦乱视频| 国产一区二区三区四区三区四| 麻豆精品久久精品色综合| 日韩视频不卡| 日韩成人动漫在线观看| 亚洲成人va| jiujiure精品视频播放| 国产一区二区三区四区| 久草在线资源站手机版| 麻豆精品av| 亚洲国产日韩欧美一区二区三区| 国产视频一区在线观看一区免费| 日韩三级av| 日韩一级特黄| 欧美日韩国产精品一区二区亚洲| 国产精品18| 亚洲小少妇裸体bbw| 欧美日韩国产一区二区三区不卡| 国产a久久精品一区二区三区| 综合久久2023| 免费成人av| 日韩欧美美女在线观看| 久久精品国产精品亚洲综合| 国产精品社区| 成人免费在线电影网| 日本不卡视频一二三区| 久久男人天堂| 国产在线不卡| 9l视频自拍蝌蚪9l视频成人| 国产精品夜夜夜| 漫画在线观看av| 亚洲女同中文字幕| 超碰精品在线观看| 国产精品啊啊啊| 日本在线精品|