加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代寫3D printer materials estimation編程

時間:2024-02-21  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Project 1: 3D printer materials estimation
Use the template material in the zip file project01.zip in Learn to write your report. Add all your function
definitions on the code.R file and write your report using report.Rmd. You must upload the following three
files as part of this assignment: code.R, report.html, report.Rmd. Specific instructions for these files are
in the README.md file.
The main text in your report should be a coherent presentation of theory and discussion of methods and
results, showing code for code chunks that perform computations and analysis but not code for code chunks
that generate functions, figures, or tables.
Use the echo=TRUE and echo=FALSE to control what code is visible.
The styler package addin is useful for restyling code for better and consistent readability. It works for both
.R and .Rmd files.
The Project01Hints file contains some useful tips, and the CWmarking file contains guidelines. Both are
attached in Learn as PDF files.
Submission should be done through Gradescope.
1 The data
A 3D printer uses rolls of filament that get heated and squeezed through a moving nozzle, gradually building
objects. The objects are first designed in a CAD program (Computer Aided Design) that also estimates how
much material will be required to print the object.
The data file "filament1.rda" contains information about one 3D-printed object per row. The columns are
• Index: an observation index
• Date: printing dates
• Material: the printing material, identified by its colour
• CAD_Weight: the object weight (in grams) that the CAD software calculated
• Actual_Weight: the actual weight of the object (in grams) after printing
Start by loading the data and plotting it. Comment on the variability of the data for different CAD_Weight
and Material.
2 Classical estimation
Consider two linear models, named A and B, for capturing the relationship between CAD_Weight and
Actual_Weight. We denote the CAD_weight for observation i by xi
, and the corresponding Actual_Weight
by yi
. The two models are defined by
• Model A: yi ∼ Normal[β1 + β2xi
, exp(β3 + β4xi)]
• Model B: yi ∼ Normal[β1 + β2xi
, exp(β3) + exp(β4)x
2
i
)]
The printer operator reasons that random fluctuations in the material properties (such as the density) and
room temperature should lead to a relative error instead of an additive error, leading them to model B as an
approximation of that. The basic physics assumption is that the error in the CAD software calculation of
the weight is proportional to the weight itself. Model A on the other hand is slightly more mathematically
convenient, but has no such motivation in physics.
1
Create a function neg_log_like() that takes arguments beta (model parameters), data (a data.frame
containing the required variables), and model (either A or B) and returns the negated log-likelihood for the
specified model.
Create a function filament1_estimate() that uses the R built in function optim() and neg_log_like()
to estimate the two models A and B using the filament1 data. As initial values for (β1, β2, β3, β4) in the
optimization use (-0.1, 1.07, -2, 0.05) for model A and (-0.15, 1.07, -13.5, -6.5) for model B. The inputs of the
function should be: a data.frame with the same variables as the filament1 data set (columns CAD_Weight
and Actual_Weight) and the model choice (either A or B). As the output, your function should return the
best set of parameters found and the estimate of the Hessian at the solution found.
First, use filament1_estimate() to estimate models A and B using the filament1 data:
• fit_A = filament1_estimate(filament1, “A”)
• fit_B = filament1_estimate(filament1, “B”)
Use the approximation method for large n and the outputs from filament1_estimate() to construct an
approximate **% confidence intervals for β1, β2, β3, and β4 in Models A and B. Print the result as a table
using the knitr::kable function. Compare the confidence intervals for the different parameters and their width.
Comment on the differences to interpret the model estimation results.
3 Bayesian estimation
Now consider a Bayesian model for describing the actual weight (yi) based on the CAD weight (xi) for
observation i:
yi ∼ Normal[β1 + β2xi
, β3 + β4x
2
i
)].
To ensure positivity of the variance, the parameterisation θ = [θ1, θ2, θ3, θ4] = [β1, β2, log(β3), log(β4)] is
introduced, and the printer operator assigns independent prior distributions as follows:
θ1 ∼ Normal(0, γ1),
θ2 ∼ Normal(1, γ2),
θ3 ∼ LogExp(γ3),
θ4 ∼ LogExp(γ4),
where LogExp(a) denotes the logarithm of an exponentially distributed random variable with rate parameter
a, as seen in Tutorial 4. The γ = (γ1, γ2, γ3, γ4) values are positive parameters.
3.1 Prior density
With the help of dnorm and the dlogexp function (see the code.R file for documentation), define and
document (in code.R) a function log_prior_density with arguments theta and params, where theta is the
θ parameter vector, and params is the vector of γ parameters. Your function should evaluate the logarithm
of the joint prior density p(θ) for the four θi parameters.
3.2 Observation likelihood
With the help of dnorm, define and document a function log_like, taking arguments theta, x, and y, that
evaluates the observation log-likelihood p(y|θ) for the model defined above.
3.3 Posterior density
Define and document a function log_posterior_density with arguments theta, x, y, and params, which
evaluates the logarithm of the posterior density p(θ|y), apart from some unevaluated normalisation constant.
2
3.4 Posterior mode
Define a function posterior_mode with arguments theta_start, x, y, and params, that uses optim together
with the log_posterior_density and filament data to find the mode µ of the log-posterior-density and
evaluates the Hessian at the mode as well as the inverse of the negated Hessian, S. This function should
return a list with elements mode (the posterior mode location), hessian (the Hessian of the log-density at
the mode), and S (the inverse of the negated Hessian at the mode). See the documentation for optim for how
to do maximisation instead of minimisation.
3.5 Gaussian approximation
Let all γi = 1, i = 1, 2, 3, 4, and use posterior_mode to evaluate the inverse of the negated Hessian at the
mode, in order to obtain a multivariate Normal approximation Normal(µ,S) to the posterior distribution for
θ. Use start values θ = 0.
3.6 Importance sampling function
The aim is to construct a **% Bayesian credible interval for each βj using importance sampling, similarly to
the method used in lab 4. There, a one dimensional Gaussian approximation of the posterior of a parameter
was used. Here, we will instead use a multivariate Normal approximation as the importance sampling
distribution. The functions rmvnorm and dmvnorm in the mvtnorm package can be used to sample and evaluate
densities.
Define and document a function do_importance taking arguments N (the number of samples to generate),
mu (the mean vector for the importance distribution), and S (the covariance matrix), and other additional
parameters that are needed by the function code.
The function should output a data.frame with five columns, beta1, beta2, beta3, beta4, log_weights,
containing the βi samples and normalised log-importance-weights, so that sum(exp(log_weights)) is 1. Use
the log_sum_exp function (see the code.R file for documentation) to compute the needed normalisation
information.
3.7 Importance sampling
Use your defined functions to compute an importance sample of size N = 10000. With the help of
the stat_ewcdf function defined in code.R, plot the empirical weighted CDFs together with the unweighted CDFs for each parameter and discuss the results. To achieve a simpler ggplot code, you may find
pivot_longer(???, starts_with("beta")) and facet_wrap(vars(name)) useful.
Construct **% credible intervals for each of the four model parameters based on the importance sample.
In addition to wquantile and pivot_longer, the methods group_by and summarise are helpful. You may
wish to define a function make_CI taking arguments x, weights, and prob (to control the intended coverage
probability), generating a **row, 2-column data.frame to help structure the code.
Discuss the results both from the sampling method point of view and the 3D printer application point of
view (this may also involve, e.g., plotting prediction intervals based on point estimates of the parameters,
and plotting the importance log-weights to explain how they depend on the sampled β-values).
請加QQ:99515681  郵箱:99515681@qq.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫Dragonfly Network Diagram Analysis
  • 下一篇:代寫UDP Client-Server application java程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    国产尤物久久久| 狠狠88综合久久久久综合网| 99精品免费| 韩日一区二区三区| 久久99久久人婷婷精品综合| 三级成人在线| 一本色道久久综合| 国产极品模特精品一二| 亚洲精品裸体| 99riav视频一区二区| 石原莉奈在线亚洲二区| 激情综合激情| 在线视频亚洲欧美中文| 国产精品地址| www.一区| 欧美gvvideo网站| 91久久久精品国产| 亚洲一区二区三区四区电影| 91精品国产一区二区在线观看| 免费成人在线电影| 美女诱惑黄网站一区| 波多野结衣在线观看一区二区 | 95精品视频| 欧美成人xxxx| 欧美aaa大片视频一二区| 国产精品videosex性欧美| 午夜片欧美伦| 亚洲一本视频| 亲子伦视频一区二区三区| 日韩三级网址| 日韩 欧美一区二区三区| 国内精品视频| 中文字幕一区二区av| 乱一区二区av| 欧美aaa在线| 日本伊人色综合网| 精品久久毛片| 成人在线高清| 最新中文字幕在线播放| 日本一二区不卡| 日韩有码一区二区三区| 亚洲欧美日本国产专区一区| 欧美日韩日本国产亚洲在线 | 日韩在线播放一区二区| 亚洲欧美日韩在线观看a三区| 天天色综合色| 国产精品色网| 蜜桃久久av| 色欧美自拍视频| 日本欧美国产| 国产欧美一区二区三区精品酒店| 欧美韩日一区| 中文字幕人成乱码在线观看| 天堂√中文最新版在线| 88xx成人免费观看视频库| 亚洲欧洲美洲av| 日韩中文影院| 日韩美女在线| 在线看片一区| 欧州一区二区三区| 日韩电影在线免费观看| 欧美三区不卡| 99tv成人| 一本色道精品久久一区二区三区| 国产亚洲激情| segui88久久综合9999| 蜜桃麻豆影像在线观看| 久久精品国内一区二区三区| 日本免费新一区视频 | 午夜日韩影院| 神马香蕉久久| 艳女tv在线观看国产一区| 在线午夜精品| 成人三级高清视频在线看| 一本大道色婷婷在线| 欧美亚洲专区| 综合干狼人综合首页| 麻豆精品在线| av亚洲免费| 激情国产在线| 深夜福利亚洲| 精品一区二区三区中文字幕 | 日av在线不卡| 精品日本视频| 毛片一区二区三区 | 麻豆精品在线观看| 亚洲天堂日韩在线| 久久蜜桃精品| 免费观看在线综合色| 午夜欧美巨大性欧美巨大| 亚洲国产日本| 免费一区二区三区在线视频| 亚洲小说欧美另类婷婷| yellow在线观看网址| 欧美一级二区| 精品国模一区二区三区欧美| 久久久国产精品一区二区中文| 一区二区亚洲精品| 先锋欧美三级| 国际精品欧美精品| 女优一区二区三区| av女在线播放| 亚洲一本二本| 91精品亚洲| 午夜亚洲伦理| 日日摸夜夜添夜夜添国产精品| 国产免费av一区二区三区| 91精品蜜臀一区二区三区在线| 免费一级片91| 日本不卡免费在线视频| 国产成人一二片| 蜜乳av一区二区三区| 久久在线91| 加勒比色综合久久久久久久久| 午夜亚洲影视| 亚洲精品日本| 久久精选视频| 日韩欧美看国产| 日韩不卡手机在线v区| 51精产品一区一区三区| 97人人做人人爽香蕉精品| 日韩电影一区二区三区| 伊人久久大香线| 国产精品蜜月aⅴ在线| 中文字幕一区二区三区四区久久| 亚洲综合99| 91麻豆精品| 日韩一区二区三区色| 久久婷婷av| 四虎4545www国产精品| 日韩精品成人在线观看| 老妇喷水一区二区三区| 亚洲精品免费观看| 成人av资源电影网站| 99久久精品一区二区成人| 亚洲福利合集| 中文在线а√在线8| 日韩电影免费一区| 免费成人美女在线观看| 99综合久久| 老司机一区二区三区| 不卡的国产精品| 日韩视频三区| 国产成人久久精品一区二区三区| 宅男在线一区| 亚洲天天综合| 好吊一区二区三区| 91国产一区 | 天堂va欧美ⅴa亚洲va一国产| 免费成人在线网站| 亚洲精品白浆高清| 国产福利电影在线播放| 日韩av高清在线观看| 日韩理论片av| 亚洲精品不卡在线观看| 免费在线小视频| 99热国内精品永久免费观看| 国产成人精品一区二区三区视频| 久久黄色影院| 亚洲精品系列| 久久成人免费| 综合成人在线| 欧美一区二区三区久久精品茉莉花 | 女人色偷偷aa久久天堂| 欧美片第1页综合| 模特精品在线| 天堂久久av| 国产成人久久精品麻豆二区| 久久精品高清| 欧美日本免费| 国产剧情av在线播放| 特黄特色欧美大片| 亚洲欧洲美洲一区二区三区| 三级一区在线视频先锋 | 亚洲色诱最新| 婷婷综合福利| 主播大秀视频在线观看一区二区| 99久久婷婷| 国产成年精品| 天堂中文在线播放| 香蕉人人精品| 精品一区二区三区四区五区| 亚洲欧洲高清| 亚洲第一天堂| 久久在线观看| 麻豆久久久久久久| 国产精品久久观看| 亚洲二区在线| 亚洲制服欧美另类| 欧美成人xxxx| 国产精品久久久久久久久妇女| 精品久久国产| 国产videos久久| 国产成人免费精品| 免费久久99精品国产| 欧美色婷婷久久99精品红桃| 西瓜成人精品人成网站| 欧美在线播放| 日韩伦理在线一区| 欧美精品一区二区三区久久久竹菊|