加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

B31SE編程代做、Java,c++程序代寫

時間:2024-02-17  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Engineering and Physical Sciences
Electrical Electronic and Computer Engineering
B31SE Image Processing
Fundamentals of Image Processing with Matlab

Matlab scripts a01images.m and b01neighbours.m demonstrate how to load and
image, get some image information, display an image, and perform some simple manipulations
with an image. Run these scripts on various images. Use matlab help if necessary.

If you feel yourself comfortable with these simple image processing manipulations and matlab
programming in general, you can start working on the following programming assignment.

This assignment consists of four parts (tasks).

Task 1a (4 points): Nonlinear image filtering. Given a grey-scale image (, ), consider
the following non-linear iterative process:

where K is a positive constant. Note that the weights {} depend on the pixel positions (, )
and the iteration number n. After a certain number of iterations, you should get results similar
to those shown in the picture below: small-scale image details are removed while salient image
edges are sharpened.

Your first task is to implement the above non-linear iterative procedure, perform a number of
experiments (with different images, different numbers of iterations, and various values of
parameter k).

A matlab script simple_averaging.m implements the above iterative scheme in the
simplest case when all the weights are equal to one: = 1.

Task 1b (4 points): Low-light image enhancement. The above filtering scheme can be used
for enhancing low-light images. Given a colour (RGB) image
Let (, ) be obtained from (, ) by applying the image filtering scheme from Part 1
described above. An enhanced version of the original colour (, ) is generated by

where    is a small positive parameter used to avoid division by zero. You are expected to get
results similar to those shown below:
original enhanced
Task 2 (4 points): Image filtering in frequency domain.
This part is independent of Parts 1 and 2 and devoted to using the Fourier transform for image
filtering purposes.

Matlab function fftshift shifts the zero frequency component of an image to the centre of
spectrum

Try Fourier4ip.m matlab script and see how the Fourier transform can be used for image
processing and filtering purposes.

Your task is as follows. Image eye-hand.png is corrupted by periodic noise. Find the Fourier
transform of the image, visualise it by using log(abs(fftshift(.))), as seen below.

An image corrupted by periodic ripples The image in the frequency domain


The four small crosses in the frequency domain correspond to the frequencies behind the
periodic noise. Use impixelinfo to locate the frequencies. Construct a notch filter (a band-stop
filter, you can use small-size rectangles or circles to kill the unwanted frequencies) and use it
to remove/suppress the periodic noise while preserving the image quality. The Part 3 of your
report must include the reconstructed image and the filter used in the frequency domain.

Task 3a (5 points): Image deblurring by the Wiener filter.
Given a grey-scale image (, ), consider the following non-linear iterative process:

(, ) = ?(, ) ? (, ) + (, )
,
where f (x,y) is the latent (unblurred) image, g(x,y) is the degraded image, h(x,y) is a known
blurring kernel, ? denotes the convolution operation, and n(x,y) stands for an additive noise.
Applying the Fourier transform to both sides of the above equation yields

(, ) = (, )(, ) + (, )
.
The Wiener filter consists of approximating the solution to this equation by

(, ) = [
1
(, )
|(, )|2
|(, )|2 +
] (, ) =
?(, )
|(, )|2 +
(, ) (1)
,
where ?(, ) is the complex conjugate of (, ). Implement Weiner filter restoration
scheme (1) and test it for different types of blur kernels (motion blur and Gaussian blur). In
your implementation of the Wiener filter restoration scheme (1) you may need to use
H = psf2otf(h,size(g));
See https://uk.mathworks.com/help/images/ref/psf2otf.html for details. See also deblur.m.

Task 3b (5 points): Image deblurring by ISRA. The matlab script deblur.m contains
simple implementations of two popular image deblurring schemes, the Landweber method
and the Richardson-Lucy method (in addition, the matlab built-in implementation of the
Wiener filter is presented in deblur.m). In particular, the Richardson-Lucy method consists
of the following iterative process

0(, ) = (, ), +1(, ) = (, ) ? (?(?, ?) ?
(, )
(, ) ? ?(, )
)

where ? stand for the pixel-wise multiplication and the pixel-wise division is also used. Let us
consider the so-called ISRA (Image Space Reconstruction Algorithm) method

0(, ) = (, ), +1(, ) = (, ) ? (
?(?, ?) ? (, )
?(?, ?) ? ?(, ) ? (, )
)

.
Your task is to implement ISRA and use PSNR graphs (see again deblur.m) to compare
ISRA against the Wiener, Landweber, and Richarson-Lucy methods for the two types of
motion blur and Gaussian blur considered in deblur.m.

Remark. In this particular example of additive gaussian noise, advantages of the Richardson-
Lucy and ISRA methods are not revealed.


Task 4 (3 points): Image filtering in frequency domain.

Matlab script handwritten_digit_recognition_simple.m provides you with a simple
application of ANN for handwritten digit recognition. Your task is to modify the hidden layers
of the network in order to achieve the accuracy higher than 93%. You are not allowed to use
CNN layers. You are not allowed to use more than 100 neurons in total for all your hidden
layers. You are not allowed to modify the training options.

You can observe that a higher accuracy can be easily achieved if convolutional layers are used:
handwritten_digit_recognition.m. You can get more information about various layers used
in ANN from https://uk.mathworks.com/help/deeplearning/ug/create-simple-deep-
learning-network-for-classification.html


Please submit a single report describing briefly your results achieved for Tasks 1, 2,
3, and 4 of the assignment. Together with the report, please submit your matlab scripts
implementing your solutions to Tasks 1, 2, 3, and 4.
請加QQ:99515681  郵箱:99515681@q.com   WX:codehelp 

掃一掃在手機打開當前頁
  • 上一篇:代寫ECON 323、C/C++,Java程序設計代做
  • 下一篇:代投EI會議、EI期刊 EI檢索入口查詢方法
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    国产日韩另类视频一区| 99精品国产一区二区三区| 欧美a级在线观看| 欧美一区三区| 午夜精品影视国产一区在线麻豆| 日本少妇一区| 99国产精品自拍| 国产精品流白浆在线观看| 中文字幕日韩一区二区不卡| 神马久久午夜| 99国产成+人+综合+亚洲欧美| 果冻天美麻豆一区二区国产| 999精品视频在线观看| 99久久伊人| 日本一区二区在线看| 成人vr资源| 国内露脸中年夫妇交换精品| 欧美三级一区| 肉丝袜脚交视频一区二区| www.com.cn成人| 日韩在线播放一区二区| 蜜桃精品噜噜噜成人av| 国产精品99久久免费观看| 久久爱www成人| 亚洲日本成人| 日日夜夜精品| 欧美日韩破处视频| 中文字幕高清在线播放| 亚洲主播在线| 日韩视频在线一区二区三区 | 高清不卡一区| 国产精品久久久亚洲一区| 手机看片久久| 色呦哟—国产精品| 久久综合影视| 亚洲一区二区网站| 悠悠资源网久久精品| 偷拍欧美精品| 免费观看不卡av| 亚洲午夜极品| 欧美综合另类| 国产一区欧美| 久久久久午夜电影| 久久日文中文字幕乱码| 日韩精品首页| 99tv成人| 精品中文一区| 亚洲电影影音先锋| 欧美日韩国产在线一区| 女人香蕉久久**毛片精品| 婷婷综合在线| 在线视频精品| 免费国产亚洲视频| 成人精品电影| 中文在线8资源库| av在线中出| 国产亚洲一区二区手机在线观看 | 日韩午夜电影网| 日韩在线观看一区 | 日本欧美一区二区三区| 日韩高清不卡在线| 欧美精品不卡| 日韩电影不卡一区| 国产精品调教| 久久亚洲国产| 亚洲免费高清| 日韩中文字幕91| 神马久久午夜| 日韩色性视频| 老司机免费视频一区二区| 国产精品啊v在线| 欧美猛男男男激情videos| 玖玖精品一区| 久久精品国产大片免费观看| 九色精品国产蝌蚪| 蜜桃av一区| 韩国三级一区| 在线精品亚洲| 欧美猛男男男激情videos| 成人中文字幕视频| 2023国产精品久久久精品双 | 少妇精品视频一区二区免费看| 欧美久久久网站| 国模大尺度视频一区二区| 日韩一区二区三区精品视频第3页 日韩一区二区三区精品 | 九九久久婷婷| a级片在线免费观看| 欧美成人aaa| 亚洲丁香日韩| 天天久久夜夜| 日本欧洲一区二区| 狠狠久久综合| 欧美美乳视频| 99精品在线免费在线观看| 视频在线观看国产精品| 欧美日韩五区| 亚欧日韩另类中文欧美| 林ゆな中文字幕一区二区| 日韩午夜免费| 99久久er| 日韩成人伦理电影在线观看| 99久久99久久精品国产片桃花| 久热精品在线| 日日夜夜一区二区| 日韩成人在线看| 在线观看免费一区二区| 国模精品视频| 久久亚州av| 成人精品天堂一区二区三区| 人人狠狠综合久久亚洲| 久久一区亚洲| 国产精品白丝av嫩草影院| 亚洲男人影院| 欧美aaaaa成人免费观看视频| 蜜桃精品视频| 视频一区中文字幕| 日本成人在线一区| 久久久久综合| 欧美国产大片| 亚洲宅男一区| 久久av一区| 日本欧美一区二区| 久久久777| 欧美久久天堂| 国产亚洲一区| 99国产精品99久久久久久粉嫩| 成人国产精品| 99精品中文字幕在线不卡| 午夜在线一区| 中文字幕一区二区三区在线视频 | 在线综合亚洲| 影音先锋久久精品| 欧美一区二区性| 久久久久久久性潮| 黑色丝袜福利片av久久| 国产在线精彩视频| 国产精品三级| 老司机精品导航| 国产精品亚洲欧美一级在线| 亚州av乱码久久精品蜜桃| 免费亚洲一区| 亚洲国产影院| 欧美亚洲视频| 欧美福利专区| 国产精品porn| 91久久午夜| 99精品女人在线观看免费视频| 国产视频一区在线观看一区免费| 日本美女视频一区二区| 久久国产电影| 国产一区二区三区久久| 欧美1区2区3区| 国产精品videossex久久发布| 极品美女一区二区三区| 亚洲三级国产| 国产精品日韩| 欧美精美视频| 日本蜜桃在线观看视频| 欧美视频导航| 欧美一区影院| 免费毛片在线不卡| 国产精品亚洲一区二区在线观看| 午夜在线视频一区二区区别| 国产精品嫩草影院在线看| 蜜臀av性久久久久蜜臀aⅴ流畅| 久久97视频| 色偷偷色偷偷色偷偷在线视频| 91成人精品在线| 国产91欧美| 尤物网精品视频| 亚洲免费观看高清完整版在线观| 四季av一区二区三区免费观看 | 日韩精品亚洲专区在线观看| 日韩一区二区中文| 欧美亚洲高清| 亚洲欧美一级| 超碰一区二区| 欧美性感美女一区二区| 白嫩亚洲一区二区三区| 91中文字幕精品永久在线| 凹凸av导航大全精品| 麻豆久久久久久| 蜜臀a∨国产成人精品| 91亚洲无吗| 亚洲精选国产| 黄色aa久久| 欧美日韩国产高清电影| 国产精品一级在线观看| 人人鲁人人莫人人爱精品| 自拍亚洲一区| 美女国产精品久久久| 美女视频一区二区三区| 国产视频一区在线观看一区免费| 日韩一区免费| 亚洲日本欧美| 欧美日韩视频网站| 亚洲深夜影院| 久久精品色综合| 国产一区二区三区91| 欧美激情福利|