加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫CS 476/676 程序

時間:2024-02-14  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


Winter 2024 CS **6/676

Assignment 1

Due Feb-11, 11:59pm, via Crowdmark.

1. [8] Consider a **period binomial model with T = 1 and assume the risk free interest rate r = 0. That is, the stock (currently priced at S0 = 10) can got up to STu = uS0 with probability pu or down to STd = dS0 with probability 1−pu where pu ∈ (0,1). We know that d < 1 < u, but we do not know u or d. Suppose the following two options are traded in the market, both with maturity T = 1:

• European Put with strike K = 9 and current price P (1) = 1, 10

• European Put with strike K = 8 and P (2) = 1/3. 20

Assume the market is arbitrage free.

(a) [3] What is the fair value of a European call option with a strike price of K3 = 7?

(b) [2]Let δ0 be the number of stocks and η0 the number of bonds (noting B0 = BT = 1) you hold at t = 0. Find δ0 and η0 so that your strategy exactly replicates the payout of a short position in this call.

(c) [3] Using the actual probability pu, what is the expected option payoff for the European call in (a)? What is wrong with pricing this call option at this expected payoff value? If this European call option is priced at the expected payoff using p which is different from the fair value computed in (a), how can you construct an arbitrage?

2. [4] Consider the N-period binomial lattice. Denote by Snj for 0 ≤ n ≤ N and 0 ≤ j ≤ n be the price of the underlying at time tn and state j (i.e., j ups). A European Straddle Option has payoff at time T

max{K −SN,0}+max{SN −K,0}.

Denote by V (Snj , K, tn) be the fair value of the straddle option at time tn in state j. Use induction (over n)

to show that for any constant λ > 0,

V(λSnj,λK,tn)=λV(Snj,K,tn), n=0,1...,N,j=0,1,...,n.

3. [8] Consider the N-period binomial lattice where, at time t , the stock price Sj can go up to Sj+1 = uSj n n n+1n

with probability pu and sown to Sj n+1

interest rate and denote by

= dSj with probability 1 − pu. Denote by r > 0 the constant risk free n

qu = er∆t − d u−d

the risk neutral probability.

(a) [3] Provide an expression for all possible stock prices at T = ∆t · N .

(b) [2] If S0 is given, what is the risk neutral probability that, at time T, the stock price has experienced exactly k up moves?

(c) [3] Using risk neutral pricing, provide the expression, in terms of T, qu, K, r for the fair time t = 0 value of a European straddle expiry T and strike price K. Recall from Question 3 that such an option has payout max{K − SN , 0} + max{SN − K, 0}. Justify your answer.

4. [8] In this exercise, we consider the problem of pricing a Parisian Up-and-In Call. Let (St)t≥0 be a geometric Brownian Motion with drift r being equal to the risk-free interest rate and volatility σ, i.e., St = S0 exp(Xt) where Xt = (r − σ2/2)t + σWt for a Brownian Motion (Wt)t≥0 and S0 > 0 is some constant (today’s stock price). Let K > 0 be the strike price and L > 0 be a barrier. A Parisian Up-and-In Call (PUIC) option is activated if the stock price process (St)t∈[0,T] exceeds L consecutively for a period of time at least D > 0. Hence, the payout of a PUIC option at time T is max {0, (ST − K ) · A}, where

(1, if (St)t∈[0,T] had a consecutive excursion above L that lasted at least D, A=.

0, otherwise.

Today’s price is the discounted expected payoff; hence, we are estimating μ = E ?e−rT max {(ST − K) · A, 0}? .

For simplicity, we assume throughout the remainder of this question that 0 < D < T, K,L > S0. 1

 

(a) [4] Give an algorithm, in pseudo-code, that computes a Monte Carlo estimator for μ based on n simu- lations.

(b) [4] Implement your algorithm from a). Let N = 250, r = 0.05, σ = 0.25, D = 0.1, T = 1, S0 = 100 and i)K=110,L=120andii)K=120,L=110. Foreachofi)andii),reportaMCestimateforμalong with a 95% confidence interval based on n = 100, 000 independent simulations.

Note. In order to count how long the stock price was above L, use the following:

• IfStk ≥LandStk+1 ≥L,addtk+1−tk totheclock.

• If Stk < L and Stk+1 < L, there is no excursion.

• If Stk < L and Stk+1 ≥ L, an excursion started between tk and tk+1; add 0.5(tk+1 − tk) to the clock. • If Stk ≥ L and Stk+1 < L, an excursion ended between tk and tk+1; add 0.5(tk+1 − tk) to the clock.

5. [22] Consider the Black Scholes model, that is, let (St)t∈[0,T] be a geometric Brownian Motion with drift r and volatility σ, i.e., St = S0 exp(Xt) where Xt = (r − σ2/2)t + σWt for a Brownian Motion (Wt)t≥0 and S0 > 0 is some constant (today’s stock price). An Asian Option with maturity T and strike price K has

payout at time T given by max n0, 1 R T St dt − K o . Given time steps 0 ≤ t1 < · · · < tN = T for some N , we T0

consider the discretized Asian option with payout max n0, N1 PNj=1 Stj − Ko . Today’s price for this option

?−rT n 1PN o? is the discounted expected payoff. As such, we are estimating μ = E e max 0, N j=1 Stj − K

the remainder of this question, assume the time steps are given by tk = Nk T for k = 1,...,N. (a) [1] Explain why this option is a path dependent option.

. For

(b) [2] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using (naive) Monte Carlo.

(c) [2] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using antithetic variates.

(d) [2] There is no known analytical formula for μ. The reason is that the distribution of the sum of log-

normals is not known. However, if we replace the arithmetic average N1 PNj=1 Stj by the geometric

?−rT ? ?QN ?1/N ?? average, i.e., if we consider μg = E e max 0, j =1 S (tj ) − K

instead, the problem sim- plifies as the distribution of the product of log-normals is again log-normal. One can show (you don’t

need to) that μg = e−rT ?ea+b/2Φ(d1) − KΦ(d2)?, where a=log(S0)+(r−σ2/2)T(N+1)/(2N), b=σ2T(N+1)(2N+1),

√ √ 6N2 d1 =(−log(K)+a+b)/ b, d2 =d1 − b.

Explain why using the Asian Option with geometric averaging can be used as a control variable to price the Asian Option with arithmetic averaging.

(e) [3] Write down an algorithm in pseudo-code to estimate a 95% confidence interval for μ using the geometric Asian Option as a control variable. Estimate the internal β using a pilot run.

(f) [4] Implement your algorithms from b), c) and e) and call your functions with S0 = 100, K = 110, r = 0.01, σ = 0.1, T = 1, N = 260 and n = 105 and npil = 100. You should report 3 confidence intervals, one for each algorithm. Comment on your output.

Finally, suppose instead of the continuous time Black Scholes model, we assume an N-period binomial model √

with u = eσ

(g) [3] Write down an algorithm, in pseudo-code, to find the fair value V0 of an Asian Call Option.

T/N, d = 1/u and qu = 1/2 (and the same σ,r,S0,K,T as before).

(h) [3] Implement your algorithm and, for each N ∈ {5, 10, 20} report the output for S0 = 100, K = 110,

r=0.01,σ=0.1(justlikebefore),u=eσ T/N,d=1/u.

(i) [2] Discuss advantages and shortcomings of the MC method versus the approximation through the binomial model.

2

 

6. [5] Graduate Students Only. Consider the N-period binomial model, but assume that at each time n ≥ 1, the up factor un = un(ω1,...,ωn) and down factor dn = dn(ω1,...,ωn) and the risk free interest rate rn = rn(ω1,...,ωn) are allowed to depend on n and the first n outcomes ω1,...,ωn ∈ {up,down}. The initial values u0,d0,r0 at time 0 are given. The stock price at time 1 is

and, for n ≥ 1, the stock price at time n + 1 is (un(ω1,...,ωn)Sn(ω1,...,ωn),

(uS0, if ω1 = up, S1(ω1) = dS0, if ω2 = down.

if ωn+1 = up,

if ωn+1 = down. .

One dollar invested or borrowed from the bank account at time 0 grows to an investment or debt of er0∆t at time 1; for n ≥ 1, one dollar invested or borrowed at time n grows to an investment or debt of ern(ω1,...,ωn)∆t at time n + 1. We assume that the no-arbitrage condition

0 < dn(ω1,...,ωn) < exp{rn(ω1,...,ωn)∆t} < un(ω1,...,ωn)

for n ∈ N and ω1,...,ωn ∈ {up,down}. Similarly, assume that at time t = 0, 0 < d0 < er0∆t < u0.

Consider a derivative which, after N periods, pays off the random amount VN (ω1, . . . , ωN ).

(a) In the model just described, provide an algorithm for determining the price at time zero for the derivative.

(b) Construct a replicating portfolio in this general model. That is, provide a formulas for δn and ηn, n = 0, 1, . . . , so that if we hold δn stocks and ηn bonds, then this portfolio replicated the derivate payout VN at time N.

Sn+1(ω1,...,ωn,ωn+1) = dn(ω1,...,ωn)Sn(ω1,...,ωn),

如有需要,請加QQ:99515681 或WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫EMS5730、代做Python設(shè)計程序
  • 下一篇:代寫CS9053、代做Java語言編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復(fù)古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復(fù)古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    欧洲激情视频| 日韩一级特黄| 久久国产精品亚洲人一区二区三区| 久久免费视频66| 少妇淫片在线影院| 黑丝一区二区三区| 国产精品丝袜在线播放| 亚洲一区二区日韩| 涩涩涩久久久成人精品| 91日韩免费| 一本色道久久综合亚洲精品高清| 国产精品流白浆在线观看| 欧美经典一区| 在线看片一区| 欧美黄色成人| 欧美日韩免费观看视频| 免费看欧美美女黄的网站| 国户精品久久久久久久久久久不卡 | 久久九九国产| 91在线一区| 日本一不卡视频| 亚洲国产欧美日韩在线观看第一区| 日日嗨av一区二区三区四区| 国产综合色在线观看| 成人av观看| 久久久久久久欧美精品| 午夜在线精品| 日韩亚洲国产精品| 免费欧美一区| 亚洲小说区图片区| 99久久亚洲精品蜜臀| 精品99在线| 国产劲爆久久| 青青一区二区三区| 国产精品极品| 中文字幕中文字幕精品| 精品国产一区二区三区av片| 亚洲精品一二三**| 97精品久久| 凹凸av导航大全精品| 欧美韩一区二区| 老牛国内精品亚洲成av人片| 国产伦乱精品| 久久久人成影片免费观看| 亚洲成人二区| 亚洲午夜激情在线| 成人短片线上看| 夜夜精品视频| 免费在线观看不卡| 欧美丰满老妇| 日韩欧美一区二区三区免费观看| 主播大秀视频在线观看一区二区| 伊人久久高清| 久久精品久久99精品久久| 日本免费一区二区三区等视频| 日韩精品久久久久久| 久久午夜影院| 亚洲小说图片视频| 91午夜精品| 99久久婷婷这里只有精品| 欧洲乱码伦视频免费| 亚洲一区二区毛片| 麻豆理论在线观看| 日韩欧美专区| 一区二区三区国产精华| 国产九一精品| 国产精品白浆| 欧美日韩国产精品一区二区亚洲| 男人天堂欧美日韩| 日韩高清在线| 国一区二区在线观看| 日韩电影在线观看完整免费观看| 国产精品高潮呻吟久久久久| 欧美69视频| 欧美激情国产在线| 日韩久久99| 国产一区二区三区站长工具| 亚洲精品在线a| 亚洲精品成人| 日韩深夜视频| 麻豆视频观看网址久久| 国内精品久久久久久久久电影网| 好吊妞国产欧美日韩免费观看网站| 欧美.www| 天堂av在线网| 亚洲天堂免费| 国产精品22p| 久久高清国产| 男人亚洲天堂| 日韩成人一级片| 加勒比久久综合| 日韩高清成人| 欧美午夜在线播放| 久久人人88| 黄视频免费在线看| 最新亚洲国产| 久久经典综合| 中文av在线全新| 欧美日韩亚洲三区| 老司机精品在线| 国产在线精彩视频| www一区二区三区| 久久久www| 天堂在线中文网官网| 一区二区电影在线观看| 久久精品动漫| 天堂中文在线播放| 偷拍自拍亚洲色图| 99在线精品免费视频九九视| 日韩三区四区| 成人av地址| av女在线播放| 综合国产视频| 亚洲综合不卡| 国色天香一区二区| 香蕉视频一区| av一区在线播放| 日韩有吗在线观看| 免费在线观看不卡| www一区二区三区| 欧美日韩国产在线观看网站| 国产综合色激情| 欧美精品中文字幕亚洲专区| 中文在线免费视频| 五月天亚洲一区| 蜜臀va亚洲va欧美va天堂 | 日本不卡一区二区三区| 久久av国产紧身裤| 色偷偷色偷偷色偷偷在线视频| 日本午夜精品| 免费观看久久久4p| 亚洲激情77| 蜜臀精品一区二区三区在线观看| 欧洲大片精品免费永久看nba| 黑人一区二区| 国产专区精品| 日本 国产 欧美色综合| 久久99免费视频| 四虎成人精品永久免费av九九| 久久av中文| bbw在线视频| 高清日韩中文字幕| 成人国产精品一区二区免费麻豆| 欧美三级午夜理伦三级小说| 中文字幕日本一区二区| 蜜臀av一区| 久久精品日韩欧美| 伊人久久大香线蕉综合热线| 欧美黄色精品| 蜜臀av一区二区| 日韩一区二区三区高清在线观看| 日韩在线观看电影完整版高清免费悬疑悬疑| 美女久久精品| 日日夜夜精品| 伊人久久综合| 国产一区99| 日韩免费视频| 一区三区在线欧| 亚洲综合伊人| а√天堂8资源中文在线| 91精品啪在线观看国产爱臀| 亚洲高清网站| 国产精品婷婷| 日本亚洲视频在线| 国产一区精品福利| 中国女人久久久| 日本一区二区三区电影免费观看| 欧美日韩免费观看视频| 亚洲小说区图片区| 国产精品手机在线播放| 日韩国产欧美| 亚洲电影影音先锋| 日韩电影一区二区三区| 精品亚洲美女网站| 在线 亚洲欧美在线综合一区| 天堂99x99es久久精品免费| 三上悠亚国产精品一区二区三区| 欧美军人男男激情gay| 亚洲成a人片77777在线播放| 性欧美超级视频| 一本一本久久| 国产suv精品一区| 欧美激情1区| 神马久久资源| 亚洲综合电影一区二区三区| 精品av一区二区| 国产精品美女久久久久久不卡| 热久久久久久| 日韩在线观看一区二区| 91精品久久久久久久久久不卡| 国产精品毛片aⅴ一区二区三区 | 国产日韩欧美| 亚洲欧美不卡| 国产精品高潮呻吟久久久久| 最新亚洲国产| 国产69精品久久久久9999人| 蜜臀av一区二区在线观看| 久久国产综合| 中文一区二区三区四区| 亚洲最新色图|