加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

 ACADEMIC代做、代寫SQL設計編程

時間:2024-01-13  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



College of Arts, Technology and Environment 
ACADEMIC YEAR 2023/24 
 
Assessment Brief 
Submission and feedback dates 

Submission deadline:    Before 14:00 on 18/01/2024 
This is an individual assessment task eligible for a 48 hour late submission window. 

Marks and Feedback due on: 14/02/2024 
N.B. all times are 24-hour clock, current local time (at time of submission) in the UK 

Submission details:
Module title and code:    UFCFLR-15-M Data Management Fundamentals         

Assessment type:    Database Design and Implementation Task 

Assessment title:        Modelling & Mapping Bristol Air Quality Data         

Assessment weighting:    50% of total module mark 

Size or length of assessment: N/A  

Module learning outcomes assessed by this task: 

Main Learning Goals & Outcomes (from the Module Specification)
oUnderstand and use the relational model to structure data for efficient and effective storage and retrieval.
oDesign, develop and validate a range of data models and schemas.
oUnderstand, evaluate and apply a range of data query and manipulation languages and frameworks.
Additional Learning Outcomes (from the Module Specification)
oConstructing and reverse-engineering entity relationship models.
oUnderstanding and applying data normalisation.
oNoSQL [data formats and understanding the difference] to RDBMS.

oLearn and use the MARKDOWN  markup syntax.

Assignment background & context
Measuring Air Quality
Levels of various air borne pollutants such as Nitrogen Monoxide (NO), Nitrogen Dioxide (NO2) and particulate matter (also called particle pollution) are all major contributors to the measure of overall air quality.
For instance, NO2 is measured using micrograms in each cubic metre of air (㎍/m3). A microgram (㎍) is one millionth of a gram. A concentration of 1 ㎍/m3 means that one cubic metre of air contains one microgram of pollutant.
To protect our health, the UK Government sets two air quality objectives for NO2 in their Air Quality Strategy
1.The hourly objective, which is the concentration of NO2 in the air, averaged over a period of one hour.
2.The annual objective, which is the concentration of NO2 in the air, averaged over a period of a year.
The following table shows the colour encoding and the levels for Objective 1 above, the mean hourly ratio, adopted in the UK.
Index    1    2    3    4    5    6    7    8    9    10
Band    Low    Low    Low    Moderate    Moderate    Moderate    High    High    High    Very High
㎍/m³    0-67    68-134    135-200    20**267    268-334    335-400    40**467    468-534    535-600    601 or more
Further details of colour encodings and health warnings can be found at the DEFRA Site.

The Input Data
The following ZIP file provides data ranging from 1993 to 22 October 2023 taken from 19 monitoring stations in and around Bristol.
Download & save the data file:  Air_Quality_Continous.zip (23.2 Mb)
Create a directory (folder) called “data” on your working machine and unzip the file there to Air_Quality_Continuous.csv (112 Mb).
Monitors may suffer downtime and may become defunct, so the data isn’t always complete for all stations.
Shown here is the first 8 lines of the file (cropped):

Note the following:
There are 19 stations (monitors):
188 => 'AURN Bristol Centre', 51.4572***56,-2.58564914143
203 => 'Brislington Depot', 51.4417**1802,-2.5599558**24
206 => 'Rupert Street', 51.4554331987,-2.59626237**4
209 => 'IKEA M**', 51.**528**609,-2.56207998299
213 => 'Old Market', 51.4560189999,-2.5834894**26
215 => 'Parson Street School', 51.4**675707,-2.604956656**
228 => 'Temple Meads Station', 51.4488837041,-2.584**776241
270 => 'Wells Road', 51.4278638883,-2.5***153315
271 => 'Trailer Portway P&R', 51.4899934596,-2.68877856929
375 => 'Newfoundland Road Police Station', 51.4606**8207,-2.58225341824
395 => "Shiner's Garage", 51.4577930**4,-2.56271419977
452 => 'AURN St Pauls', 51.4628294172,-2.58454**35
4** => 'Bath Road', 51.4425372726,-2.571375360**
459 => 'Cheltenham Road \ Station Road', 51.4689385**1,-2.5927241667
463 => 'Fishponds Road', 51.**80449714,-2.5**3027459
481 => 'CREATE Centre Roof', 51.4**213417,-2.622**405516
500 => 'Temple Way', 51.45794971** ,-2.58398****3
501 => 'Colston Avenue', 51.4552693827,-2.59664882855
672 => 'Marlborough Street', 51.4591419717,-2.5954**71836
These monitors are spread across the four City of Bristol constituencies represented by the following Members of Parliament (MP's):
oBristol East - Kerry McCarthy (MP);
oBristol Northwest - Darren Jones (MP);
oBristol South - Karin Smyth (MP); &
oBristol West - Thangam Debbonaire (MP).
Each line represents one reading from a specific detector. Detectors take one reading every hour. If you examine the file using a programming editor, (Notepad++ can handle the job), you can see that the first row gives headers and there are another 1603492 (1.60 million+) rows (lines). There are 19 data items (columns) per line.
The schema for data (what each field represents) is given below:
measure    desc    unit
Date Time    Date and time of measurement    datetime
SiteID     Site ID for the station     integer
NOx     Concentration of oxides of nitrogen     ㎍/m3
NO2     Concentration of nitrogen dioxide     ㎍/m3
NO    Concentration of nitric oxide     ㎍/m3
PM10    Concentration of particulate matter <10 micron diameter    ㎍/m3
O3    Concentration of ozone Concentration of non - volatile particulate matter <10 micron diameter    ㎍/m3
Temperature     Air temperature    °C
ObjectID    Object (?)    Integer
ObjectID2    Object (?)    Integer
NVPM10    Concentration of non - volatile particulate matter <10 micron diameter    ㎍/m3
VPM10    Concentration of volatile particulate matter <10 micron diameter    ㎎/m3
NVPM2.5    Concentration of non volatile particulate matter <2.5 micron diameter    ㎍/m3
PM2.5    Concentration of particulate matter <2.5 micron diameter    ㎍/m3
VPM2.5    Concentration of volatile particulate matter <2.5 micron diameter    ㎍/m3
CO    Concentration of carbon monoxide    ㎎/m3
RH    Relative Humidity    %
Pressure    Air Pressure    mbar
SO2    Concentration of sulphur dioxide    ㎍/m3

Completing your assessment  

What am I required to do on this assessment? 

This is an individual assessment task requiring you to design, implement and populate a relational DB (MySQL) using open data (pollution levels in Bristol).

You are then required to design and run several SQL queries against the extracted (cropped) data set.  

Additionally, you are required to produce a report (in markdown format) describing the research undertaken, a prototype implementation (using a small sample of the dataset) and at least one example query in the NoSQL database of your choice. This report should also discuss the use cases and justification of using de-normalised (NoSQL) data models in contrast to normalised (relational) data models.

Finally, you should produce a short report (less than 600 words and again in markdown format) explaining the overall process undertaken, any issues and resolutions and the learning outcomes you have achieved. 

Your submission should consist of a single ZIP file dmf-assign.zip  containing all files and the two reports as specified in this brief. 

Where should I start? 

This assignment consists of seven tasks. This is the task breakdown: 
Task 1:  Organize and model the data (10 marks):
Group the detectors by constituency and design a normalised Entity Relationship (ER) model which models all the data items.
Note that this model should be a "no loss" model - that is, with the required entities holding all the attributes from all the derived entities. 
All relationships should be clearly defined and enumerated.
Submission file: An ER diagram pollution-er.png.
Task 2:  Forward engineer the ER model to a MySQL database (10 marks):
Using MySQL Workbench and/or PhpMyAdmin, create the required tables and fields to hold the data. All primary and foreign key attributes should be defined, and all fields should have the appropriate (required) data type.
Submission file: A download of a SQL file as pollution.sql showing all table and attribute definitions.
Task 3:  Crop and cleanse the data (10 + 6 marks):
i) Crop the dataset to hold only the data from 1st January 2015 on; (5 marks);
ii) Cleanse the cropped dataset to ensure that all dates fall between 1st January 2015 and 22nd October 2023. (5 marks)

An extra 6 marks are available if you can accomplish the above two tasks using PYTHON code.

Submission file/s: A ZIP file cropped.zip holding the cropped and cleansed data. Additionally and possibly, a PYTHON script called cropped.py that accomplishes the above tasks.

Task 4:  Populate the MySQL database tables with the extracted/reduced dataset created in the previous task (10 + 6 marks):

USE PhpMyAdmin’s “import CSV” feature or MySQL's “LOAD DATA INFILE” statement to import the cropped & cleansed dataset into the MySQL tables implementation completed in Task 2 (10 marks).

You can make use of the following guides:
- Import CSV file data into MySQL table with phpMyAdmin;
- Import CSV File Into MySQL Table.

An extra 6 marks are available if you can accomplish the above data mapping task using PYTHON code.

Submission file/s: A screen capture readings.png showing the first 12 records of the main readings file.
Additionally and possibly, a PYTHON script called import.py that accomplishes the above task.

Task 5: Design, write and run SQL queries (12 marks):

Write and implement (test run) the following four SQL queries:

i) Return the date/time, station name and the highest recorded value of nitrogen oxide (NOx) found in the dataset for the year 2022. (4 marks)

ii) Return the mean values of PM2.5 (particulate matter <2.5 micron diameter) & VPM2.5 (volatile particulate matter <2.5 micron diameter) by each station for the year 2022 for readings taken on or near 08:00 hours (peak traffic intensity). (4 marks)

iii) Extend the previous query to show these values for all stations for all the data. (4 marks)
Model the data for a specific monitor (station) to a NoSQL data model (key-value, xml or graph) to implement the selected database type/product & pipe or import the data.
Submission files: Code listing of the three SQL queries query-a.sql, query-b.sql & query-c.sql.
Task 6: Model, implement and query a selected NoSQL database. (24 marks)
Model the data for a specific monitor (station) to a NoSQL data model (key-value, xml, timeseries or graph) to implement the selected database type/product & pipe or import a small sample of the data. You should also implement an example query in your selected database and show the output (screen capture).
You can select from any of the eight databases listed below but if you want, you can also select one not currently on the list (after consultation with the tutor).
        
         
Submission file: A report (in markdown format) nosql.md that is less than 1200 words.

Task 7: Reflective Report. (12 marks)
A short report in Markdown format (less than 800 words) reflecting on the assignment tasks, the problems encountered, and the solutions found.
You should also briefly outline the Learning Outcomes you have managed to achieve in undertaking this Assignment.
Submission file: A report (in markdown format) named report.md. 
    


What do I need to do to pass?  
The pass mark is 50%. 

How do I achieve high marks in this assessment?  
We are looking for a well-constructed design transformed into a complete and valid implementation. No PYTHON coding is required to achieve a first-class mark (up to 88%) but if you do want to attempt the PYTHON coding tasks, you can gain an extra 12%. The SQL queries should be functional and return the required results. A first-class attempt will also include two well-constructed reports. The NoSQL task should import a small sample of the dataset and implement at least one query showing the output.  This report should outline the design and implementation and include a brief discussion of a normalised (relational) model contrasting it to a de-normalised (NoSQL) model. The final report should reflect on the tasks undertaken, the problems encountered, and the solutions found.  You will make use UWE/Harvard referencing if any external resources are referenced. 

How does the learning and teaching relate to the assessment?  
The lectures and particularly the workshops will guide you on each of design and implementation tasks. All teaching will be completed before the assignment is due for submission. 

What additional resources may help me complete this assessment? 
You will find relevant material in the lectures and worksheets. You can also make use of LinkedIn Learning for hands on lessons and practice. 
 
What do I do if I am concerned about completing this assessment? 
UWE Bristol offer a range of Assessment Support Options that you can explore through this link, and both Academic Support and Wellbeing Support are available. 
For further information, please see the Academic Survival Guide. 

How do I avoid an Assessment Offence on this module? 2 
Use the support above if you feel unable to submit your own work for this module.  
Avoid collusion and explain things in your own words (not those of a machine). 


Marks and Feedback 
Your assessment will be marked according to the following marking criteria. 
You can use these to evaluate your own work before you submit. 
Criterion     <50%     50-59%     60-69%     ≧70% 
Task 1:  Organize and model the data (10%)
    Limited and incorrect model that does not capture all the required entities and attributes. Relationships are incorrect.
No proper naming convention adopted.
    Adequate model with some minor errors. All entities and attributes are captured. Relationships are as required.    A valid and correct model capturing all required entities, attributes and relationships. All attributes are properly named with their required data types.
    Optimal model adopting a consistent naming convention. All entities, attributes (with the required data types) and relationships are captured. Relationships are labelled and correctly enumerated.

Task 2: Forward Engineer the ER model to MySQL (10%)    Database lacks all required fields and may have missing keys. Relationships are not properly implemented using foreign keys as required.    All data has been mapped with the required keys and relationships. There may be minor errors.    A good implementation including the required keys and relationships. Data types may not be optimal and have minor anomalies.    A complete and valid mapping of the ER model with well named fields and data types. Required relationships are complete and correct.
Task 3: Crop and cleanse the data (10% + 6%)    Not all data is cropped and cleaned as required.    Data is adequately cleaned overall but may have some minor anomalies (e.g., missed rows).    All data is cropped and cleaned as required.     A complete cleansing and cropping attempt with all data complete with no missing columns or records. An attempt has been made at the PYTHON code even if not complete.

Task 4: Populate the MySQL database tables (10% + 6%)    Not all data is mapped to the database as required.    All data has been mapped but may be inconsistent in places due to an inadequate model.    All data is mapped to the required tables and all keys are implemented. No missing data and all relationships are realized using foreign keys.    All data is accurately mapped to the required tables and all keys are implemented. No missing data and all relationships are realized using foreign keys. An attempt has been made at the 
PYTHON code even if not complete.
Task 5: SQL queries    Queries are not functional and/or contain errors. Some effort apparent.     All queries are included in the submission as required. Queries are functional. Queries return the expected output.    SQL queries are commented and functionally complete returning the expected output.     SQL queries include comments, are optimized, and work as required. Queries and output (screen captures) are included in the submission. 
Task 6: NoSQL implementation and report    A sub-optimal design or implementation. Report lacks sufficient discussion and reflection.     A reasonable report with an adequate data model. Implementation may have some flaws and the discussion may lack the required detail.    A complete data model and NoSQL implementation. Some discussion of normalisation / de-normalisation in their context.    A complete and accurate NoSQL implementation with an excellent model and discussion. One or more queries have been implemented showing evidenced output.
Task 7: Reflective report    Report lacks sufficient detail and reflection.    An adequate report with some discussion of the problems encountered and solutions implemented.    A good report with adequate discussion of problems and solutions. Some discussion of learning outcomes.    An excellent and complete report with detailed discussion of problems, solutions and the learning outcomes achieved.
 
1.In line with UWE Bristol’s Assessment Content Limit Policy (formerly the Word Count Policy), word count includes all text, including (but not limited to): the main body of text (including headings), all citations (both in and out of brackets), text boxes, tables and graphs, figures and diagrams, quotes, lists.  
2.UWE Bristol’s UWE’s Assessment Offences Policy requires that you submit work that is entirely your own and reflects your own learning, so it is important to: 
Ensure you reference all sources used, using the UWE Harvard system and the guidance available on UWE’s Study Skills referencing pages.  
Avoid copying and pasting any work into this assessment, including your own previous assessments, work from other students or internet sources 
Develop your own style, arguments and wording, so avoid copying sources and changing individual words but keeping, essentially, the same sentences and/or structures from other sources 
Never give your work to others who may copy it 
If an individual assessment, develop your own work and preparation, and do not allow anyone to amend your work (including proof-readers, who may highlight issues but not edit the work).  

When submitting your work, you will be required to confirm that the work is your own, and text-matching software and other methods are routinely used to check submissions against other submissions to the university and internet sources. Details of what constitutes plagiarism and how to avoid it can be found on UWE’s Study Skills pages about avoiding plagiarism. 
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:指標代寫 代寫指標 代寫公式 公式代寫
  • 下一篇:指標代寫 代寫選股公式 代寫指標 代寫量化策略
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲国产黄色| 亚洲精品推荐| 风间由美中文字幕在线看视频国产欧美| 在线国产一区二区| 国产精品天堂蜜av在线播放| 久久在线观看| 视频一区二区不卡| 欧美黄在线观看| 欧美日韩国产一区精品一区| 青草综合视频| 第四色在线一区二区| 91亚洲成人| 日本一区二区三区电影免费观看| 雨宫琴音一区二区在线| 日本午夜精品久久久久| 国产96在线亚洲| 免费在线小视频| 4438全国亚洲精品观看视频| av资源中文在线| 婷婷视频一区二区三区| 韩国久久久久久| 日韩欧美一级| av在线视屏| 日韩电影在线观看一区| 国产精品xx| 美女精品视频在线| 一本大道色婷婷在线| 一区二区精彩视频| 美女视频在线免费| 日韩精品网站| 日本伊人精品一区二区三区观看方式| 99久久影视| 亚洲有吗中文字幕| 蜜桃久久av| 精品视频一区二区三区| 国产精品二区影院| 亚洲视频www| 亚洲福利网站| 巨乳诱惑日韩免费av| 欧美一级片网址| 成人激情在线| 精品国产123区| 麻豆国产精品视频| 亚洲免费激情| 日本亚洲天堂网| 巨胸喷奶水www久久久| 99精品综合| 综合视频在线| 色天天综合网| 色综合www| 成人在线日韩| 日韩一区二区在线| 伊人久久综合影院| 国产精一区二区| 亚洲美女炮图| 欧美日韩激情| 欧美男同视频网| 日韩精品免费观看视频 | 国产精品极品国产中出| 久久国产视频网| 日韩精品一级二级 | 一区二区三区国产在线| 亚洲一区二区成人| 国产精品白浆| 一区二区三区网站| 日韩系列欧美系列| av不卡在线看| 日韩精品看片| 先锋影音国产精品| 麻豆91在线观看| 日韩欧美三级| 视频一区中文字幕| 91精品久久久久久久久久不卡| 欧美激情无毛| 成人国产在线| 男男成人高潮片免费网站| 欧美日韩一区二区综合| 国产色99精品9i| 欧美日本二区| 免费日韩成人| 国产在线美女| 999亚洲国产精| 精品国产美女| 日韩成人视屏| 国产探花在线精品一区二区| 欧美在线1区| 亚洲最新无码中文字幕久久| 狠狠入ady亚洲精品经典电影| 国内精品免费| 久久久久九九精品影院| 在线欧美激情| 青青草视频一区| 国产精成人品2018| 亚洲美女久久精品| 蜜桃视频一区| 99riav国产精品| 免费视频亚洲| 99国产精品免费视频观看| 91精品国产自产在线丝袜啪| 亚洲综合福利| 国产成人黄色| 国产不卡一区| 成人在线分类| av一级久久| 欧美日一区二区在线观看 | 色97色成人| 美女精品一区| 亚洲综合二区| 视频一区在线播放| 免费在线观看日韩欧美| 亚洲一区区二区| 国产精品腿扒开做爽爽爽挤奶网站| 久久综合av| 欧美~级网站不卡| 自拍亚洲一区| 伊人成年综合电影网| 亚洲美女视频在线免费观看| 在线亚洲精品| 美女精品一区| 91麻豆国产自产在线观看亚洲| 蜜桃在线一区二区三区| 男女视频一区二区| 麻豆网站免费在线观看| 欧洲一区二区三区精品| 欧美性www| 国产精品一页| 欧美黄免费看| 国产一区国产二区国产三区| 日韩电影在线免费看| 中文一区二区三区四区| 国产精品久久久久久久久久白浆 | 亚洲麻豆一区| 国产欧美日本| 日韩精品三级| 91精品国产91久久久久久密臀| 久久国产综合| 亚洲专区一区| 日韩pacopacomama| 日韩精品国产欧美| 国产精品1区| 欧美色一级片| 2023国产精品久久久精品双| 久久国产66| 热三久草你在线| 日日噜噜夜夜狠狠视频欧美人| 国产精品分类| 日韩中文字幕一区二区高清99| 久久精品官网| 香蕉av777xxx色综合一区| 都市激情国产精品| 国产精品一区毛片| 婷婷亚洲精品| 亚洲网站在线| 男女性色大片免费观看一区二区 | 成年男女免费视频网站不卡| 国产精品一区二区免费福利视频 | 日韩在线视频精品| 亚洲国产片色| eeuss鲁片一区二区三区| 国产一在线精品一区在线观看| 日韩在线一区二区| 国产精品伦一区二区| 国产一区毛片| 欧美先锋资源| 丝袜诱惑一区二区| 综合激情视频| 精品理论电影在线| 视频一区在线播放| 久久国产免费看| 日韩不卡一二三区| 欧美亚洲精品在线| 中文字幕成在线观看| 欧美日韩亚洲一区| 欧美色图婷婷| jizzjizz中国精品麻豆| 亚洲精品免费观看| 精品久久久久久久| 手机在线电影一区| 久久久久97| 久久蜜桃资源一区二区老牛| 色综合蜜月久久综合网| 欧美日韩影院| 欧美va天堂在线| 少妇一区视频| 视频欧美一区| 免费观看久久久4p| 中文字幕免费一区二区| 久久婷婷丁香| 国产v综合v| 美女精品久久| 四虎成人精品永久免费av九九| 亚洲欧美综合久久久| 亚洲天堂偷拍| 日韩深夜福利网站| 国产精品一区二区中文字幕| 欧美丰满日韩| 日韩av午夜在线观看| 99精品福利视频| 国内精品亚洲| 日韩视频二区|