加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代做MA2552、代寫Matlab編程設計

時間:2023-12-15  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


MA2552 Introduction to Computing (DLI) 2023/24

Computational Project

Aims and Intended Learning Outcomes

The aims of the Project are to describe methods for solving given computational problems, develop and test Matlab code implementing the methods, and demonstrate application

of the code to solving a specific computational problem. In this Project, you be will be required to demonstrate

• ability to investigate a topic through guided independent research, using resources

available on the internet and/or in the library;

• understanding of the researched material;

• implementation of the described methods in Matlab;

• use of the implemented methods on test examples;

• ability to present the studied topic and your computations in a written Project Report.

Plagiarism and Declaration

• This report should be your independent work. You should not seek help from other

students or provide such help to other students. All sources you used in preparing your

report should be listed in the References section at the end of your report and referred

to as necessary throughout the report.

• Your Project Report must contain the following Declaration (after the title page):

DECLARATION

All sentences or passages quoted in this Project Report from other people’s work have

been specifically acknowledged by clear and specific cross referencing to author, work and

page(s), or website link. I understand that failure to do so amounts to plagiarism and

will be considered grounds for failure in this module and the degree as a whole.

Name:

Signed: (name, if submitted electronically)

Date:

Project Report

The report should be about 6-8 pages long, written in Word or Latex. Equations should

be properly formatted and cross-referenced, if necessary. All the code should be included in

the report. Copy and paste from MATLAB Editor or Command Window and choose ‘Courier

New’ or another fixed-width font. The Report should be submitted via Blackboard in a single

file (Word document or Adobe PDF) and contain answers to the following questions:

1

MA2552 Introduction to Computing (DLI) 2023/24

Part 0: Context

Let f(x) be a periodic function. The goal of this project is to implement a numerical method

for solving the following family of ordinary differential equations (O.D.E):

an

d

nu(x)

dxn

+ an−1

d

n−1u(x)

dxn−1

+ . . . + a0u(x) = f(x), (1)

where ak, k = 0, · · · , n, are real-valued constants. The differential equation is complemented

with periodic boundary conditions:

d

ku(−π)

dxk

=

d

ku(π)

dxk

for k = 0, · · · , n − 1.

We aim to solve this problem using a trigonometric function expansion.

Part 1: Basis of trigonometric functions

Let u(x) be a periodic function with period 2π. There exist coefficients α0, α1, α2, . . ., and

β1, β2, . . . such that

u(x) = X∞

k=0

αk cos(kx) +X∞

1

βk sin(kx).

The coefficients αk and βk can be found using the following orthogonality properties:

Z π

−π

cos(kx) sin(nx) dx = 0, for any k, n

Z π

−π

cos(kx) cos(nx) dx =

ɽ**;?**0;

ɽ**;?**1;

0 if k ̸= n

π if k = n ̸= 0

2π if k = n = 0.

Z π

−π

sin(kx) sin(nx) dx =

(

0 if k ̸= n

π if k = n ̸= 0.

1. Implement a function that takes as an input two function handles f and g, and an

array x, and outputs the integral

1

π

Z π

−π

f(x)g(x) dx,

using your own implementation of the Simpson’s rule scheme. Corroborate numerically

the orthogonality properties above for different values of k and n.

2. Show that

αk =

(

1

π

R π

−π

u(x) cos(kx) dx if k ̸= 0

1

R π

−π

u(x) dx if k = 0

βk =

1

π

Z π

π

u(x) sin(kx) dx.

2

MA2552 Introduction to Computing (DLI) 2023/24

3. Using question 1 and 2, write a function that given a function handle u and an integer

m, outputs the array [α0, α1 . . . , αm, β1, . . . , βm].

4. Write a function that given an array [α0, α1 . . . , αm, β1, . . . , βm], outputs (in the form

of an array) the truncated series

um(x) := Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx), (2)

where x is a linspace array on the interval [−π, π].

5. Using the function from question 3, compute the truncated series um(x) of the following

functions:

• u(x) = sin3

(x)

• u(x) = |x|

• u(x) = (

x + π, for x ∈ [−π, 0]

x − π, for x ∈ [0, π]

,

and using question 4, plot u(x) and um(x) for different values of m.

6. Carry out a study of the error between u(x) and um(x) for ∥u(x)−um(x)∥p with p = 2

and then with p = ∞. What do you observe?

Part 2: Solving the O.D.E

Any given periodic function u(x) can be well approximated by its truncate series expansion (2) if m is large enough. Thus, to solve the ordinary differential equation (1)

one can approximate u(x) by um(x):

u(x) ≈

Xm

k=0

αk cos(kx) +Xm

k=1

βk sin(kx),

Since um(x) is completely determined by its coefficients [α0, α1 . . . , αm, β1, . . . , βm],

to solve (1) numerically, one could build a system of equations for determining these

coefficients.

7. Explain why under the above approximation, the boundary conditions of (1) are automatically satisfied.

8. We have that

dum(x)

dx =

Xm

k=0

γk cos(kx) +Xm

k=1

ηk sin(kx)

Write a function that takes as input the integer m, and outputs a square matrix D that

maps the coefficients [α0, . . . , αm, β1, . . . , βm] to the coefficients [γ0, . . . , γm, η1, . . . , ηm].

3

MA2552 Introduction to Computing (DLI) 2023/24

9. Write a function that given a function handler f and the constants ak, solves the

O.D.E. (1). Note that some systems might have an infinite number of solutions. In

that case your function should be able identify such cases.

10. u(x) = cos(sin(x)) is the exact solution for f(x) = sin(x) sin(sin(x))−cos(sin(x)) (cos2

(x) + 1),

with a2 = 1, a0 = −1 and ak = 0 otherwise. Plot the p = 2 error between your numerical solution and u(x) for m = 1, 2, . . .. Use a log-scale for the y-axis. At what rate

does your numerical solution converge to the exact solution?

11. Show your numerical solution for different f(x) and different ak of your choice.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:INT3095代做、代寫Artificial Intelligence語言編程
  • 下一篇:代寫MGMT20005、代做Decision Analysis程序
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    国产成人77亚洲精品www| 午夜av一区| 一区二区不卡| 少妇视频一区| 国产亚洲福利| 欧美调教在线| 亚洲专区视频| 亚洲三级国产| 日本一区二区三区视频在线| 香蕉久久网站| 精品久久中文| 午夜精品影视国产一区在线麻豆| 色综合久久久| 亚洲黄色网址| 美女精品在线| 成人aaaa| 99国产精品免费视频观看| 天堂俺去俺来也www久久婷婷| 日韩精品国产欧美| 超碰这里只有精品| 多野结衣av一区| 久久成人一区| 一精品久久久| 久久裸体网站| 韩国精品福利一区二区三区| 国产精品中文| 欧美激情1区2区| 日韩国产欧美三级| 国产精品天堂蜜av在线播放| a天堂资源在线| 久色成人在线| 国产精品五区| 中文欧美日韩| 中文亚洲字幕| 夜久久久久久| 国产手机视频一区二区| 2023国产精品久久久精品双| 亚洲大片在线| 久久婷婷亚洲| 欧美日中文字幕| 国内精品视频在线观看| 久久免费高清| 99久久夜色精品国产亚洲1000部| 欧美三级乱码| 爱爱精品视频| 国产香蕉精品| 久久久久免费av| 久久久综合网| 1024成人| 成人a'v在线播放| 亚洲精品久久久| 希岛爱理一区二区三区| 91精品电影| 亚洲一区二区伦理| 蜜臀91精品一区二区三区| 男女男精品视频| av在线视屏| 成人看片网站| 国产一区二区三区久久久久久久久 | 9999久久久久| 欧美顶级毛片在线播放| 久久精品成人| 牛夜精品久久久久久久99黑人| 羞羞答答成人影院www| 女人色偷偷aa久久天堂| 老鸭窝亚洲一区二区三区| 久久国产精品毛片| 国产精品25p| 高清亚洲高清| 亚洲网站免费| 西瓜成人精品人成网站| 大奶一区二区三区| 久久影院100000精品| 欧美午夜不卡影院在线观看完整版免费| 欧美日韩国内| 毛片电影在线| 日日嗨av一区二区三区四区| 综合在线一区| 国产精品巨作av| 黄色免费成人| 色网在线免费观看| 老司机午夜精品| 欧美猛男男男激情videos| 欧美人体视频| 国产农村妇女精品一区二区| 日本在线高清| 美女国产一区二区三区| 亚洲妇女av| 久久精品影视| 蜜臀av一区二区在线免费观看| 91精品美女| 亚洲一区二区小说| 欧美高清视频看片在线观看| 亚洲免费激情| 日本精品另类| 自拍自偷一区二区三区| 天堂日韩电影| 欧美黄色录像片| 亚洲美女色禁图| 成人台湾亚洲精品一区二区| 天天天综合网| 午夜精品成人av| 亚洲va久久| 亚洲天堂激情| 日韩免费小视频| 亚洲欧美成人vr| 欧洲激情综合| 欧美一区二区三区婷婷| 久久综合影院| 最新成人av网站| 国产日韩欧美一区在线| 大型av综合网站| 免费在线成人网| 亚洲综合激情在线| 欧美综合另类| 国产成人免费| 亚洲一区二区三区四区电影| 老司机一区二区三区| 另类综合日韩欧美亚洲| 精品国产乱码久久久| 国产精品久久久久一区二区三区厕所| 日本中文字幕一区| 91精品精品| av一区在线播放| 欧美日韩天堂| av在线播放资源| 国产亚洲电影| 玖玖精品视频| 欧美韩国一区| 亚洲精品国产成人影院| 国产精品一二| 欧美色图一区| 丰满少妇一区| 欧美三级午夜理伦三级小说| 欧美xxxhd| 国内毛片久久| 青青在线精品| 欧美日韩一本| 国产精品美女午夜爽爽| 久久婷婷激情| 久久精品国产一区二区三| 久久激情电影| 久久精品国产77777蜜臀| 神马午夜久久| 99精品国产在热久久婷婷| 久久免费高清| 国产一区二区三区的电影 | 日韩国产精品大片| 欧美成人国产| 久久综合另类图片小说| 伊人久久久大香线蕉综合直播| 亚洲国产一区二区精品专区| 女人香蕉久久**毛片精品| 日本麻豆一区二区三区视频| 激情91久久| 欧美日本成人| 日韩欧美高清| 国产99久久精品一区二区300| 欧美成人家庭影院| 91高清一区| 综合色就爱涩涩涩综合婷婷| 免费成人av在线| 国产色噜噜噜91在线精品| 福利一区二区| 亚洲精品123区| 亚洲精品合集| 亚洲综合av一区二区三区| 欧美日韩中文一区二区| 亚洲日本欧美| 首页国产欧美日韩丝袜| av自拍一区| 麻豆成人免费电影| 日韩精品一二三| 精品国产网站| 91精品一区| 国产在线看片免费视频在线观看| 成人福利一区| 久久亚洲黄色| 玖玖在线播放| 欧美日韩国产一区二区三区不卡 | 成人午夜亚洲| 国产亚洲毛片| 精品视频97| 96视频在线观看欧美| 樱桃视频成人在线观看| 欧美福利影院| 午夜日韩影院| 久久久久97| 欧美日韩五区| 首页国产欧美日韩丝袜| 精品精品国产毛片在线看| 综合在线视频| 亚洲国产精选| 久久xxxx| 亚洲国产专区校园欧美| 日韩精品成人在线观看| 另类人妖一区二区av| 日韩精品电影| 美日韩精品视频| 激情综合网址|