加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

COMP5930M 代做、代寫 c++,java 程序語言

時間:2023-12-11  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



School of Computing: assessment brief
   Module title
 Scientific Computation
  Module code
 COMP5930M
  Assignment title
 Coursework 2
  Assignment type and description
 Coursework assignment
  Rationale
 TBA
  Weighting
 20% of total mark
  Submission dead- line
 December 14th 2023 at 10:00
  Submission method
 Turnitin submission through Minerva
  Feedback provision
 Feedback provided on Minerva
  Learning outcomes assessed
 (i) Formulate and solve systems of nonlinear equations to solve challenging real-world problems arising from en- gineering and computational science; (ii) Implement al- gorithmic solutions to solve computational differential equation problems based on mathematical theory; (iii) Analyse computational linear algebra problems to iden- tify and implement the most efficient and scalable solu- tion algorithm to apply for large problems.
  Module lead
 Dr Toni Lassila
           1

1. Assignment guidance
Provide answers to the two exercises below. Answer both exercises.
2. Assessment tasks
Exercise 1: The Burgers’ equation models the propagation of a pres- sure wave in shock tube. It is a nonlinear partial-differential equation in one spatial dimension to find u(x, t) s.t.
∂u + u∂u = ν ∂2u, (1) ∂t ∂x ∂x2
where the boundary conditions u(a, t) = ua and u(b, t) = ub for all t, and the initial condition u(x, 0) = u0(x) need to be prescribed in order to obtain a well-posed problem. Here ν is the kinematic viscosity of the fluid. For ν = 0 we have the inviscid Burgers’ equation, and for ν > 0 we have the viscous Burgers’ equation.
(a) Applying the central difference formula to the second order deriva- tive in space, the upwind difference formula
􏰀Uk−Uk 􏰁
i−1
using implicit Euler’s method leads to the discrete formulation: Uk −Uk−1 􏰀Uk −Uk 􏰁 􏰀Uk −2Uk +Uk 􏰁
Fi(U)= i i +Uik i i−1 −ν i+1 i i−1 =0 ∆t h h2
(2) for i = 2,3,...,m−1 where the interval has been discretised with
m uniformly distributed nodes and a spatial grid size h. Implement the function F as a python subroutine fun burgers.py
        def fun_burgers( uk, ukp, dt, h, nu, ua, ub )
where uk is the vector Uk of size m, ukp is the previous time-step solution vector Uk−1, dt is the time-step ∆t, h is the spatial grid size parameter h, and nu is the kinematic viscosity ν. Include the boundary conditions ua and ub in the implementation. [6 marks]
2
Uik i
to the first order derivative in space, and discretising (1) in time
 h
   
(b) Derive the analytical formulas for the nonzero elements on row i of the Jacobian matrix for (2): [4 marks]
∂Fi , ∂Fi, ∂Fi . ∂Ui−1 ∂Ui ∂Ui+1
(c) Solve problem (2) numerically using your fun burgers.py and the PDE solver template solver burgers.py provided in the course- work folder. Use the viscosity value ν = 0.01, the time-step ∆t=0.01,thegridsizeh=0.01,andafinaltimeofT =1. The initial solution u(x, 0) should be taken as a unit step located at x = 0.1 (see below) and the boundary conditions as: u(0, t) = 1 and u(1, t) = 0.
   Figure 1: Initial condition u0(x) for the Burgers’ equation (1)
Plot the solution u(x, T ) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). [2 marks]
3

(d) The solution of Burgers’ equation (1) can be shown to be a (decay- ing) wavefront that travels from left to right at a constant velocity v. What is the approximate value of the numerical wavefront ve- locity vnum for ν = 0.01, ∆t = 0.01, and h = 0.01? Measure the approximate location of the wavefront using the point where the solution u(xmid) ≈ 0.5. [1 mark]
(e) Replace the discretisation of the nonlinear convection term with the downwind difference formula
􏰀Uk − Uk 􏰁
i (3)
and solve the problem with same parameters as in (c). Plot the solution u(x,T) at the final time step T = 1 and include it in your report. Also report the total number of Newton iterations required for the numerical solution (sum of Newton iterations over all time steps). What is the numerical wavefront velocity vnum in this case?
Now set ν = 0.001 and solve the problem again using the down- wind difference formula. What do you observe? Now solve the problem with ν = 0.001 using the original upwind difference for- mula and compare the results. What is the numerical wavefront velocity vnum in this case? [7 marks]
Uik i+1
h
 4

Exercise 2: Consider the anisotropic diffusion equation to find u(x, y) s.t.
􏰀 ∂2u ∂2u􏰁
− μx∂x2 +μy∂y2 =f(x,y), (x,y)∈(0,1)×(0,1), (4)
and the boundary condition u = 0 on Γ (the boundary of the unit square), where u is a scalar function that models the temperature of a heat-conducting object modelled here as a unit square and f(x,y) is a function modelling a heat source. The heat conductivity coefficients, μx > 0 and μy > 0, can have different magnitudes (anisotropy).
(a) Discretising the problem (4) using the second-order finite differ- ence formulas
∂2u ≈ ui,j−1 − 2ui,j + ui,j+1 .
Write the second-order finite difference stencil (similarly as in Tu- torial 7)
∂2u ≈ ui−1,j − 2ui,j + ui+1,j , ∂x2 h2
  ∂y2
−μx h2 −μy h2 = fi,j.
h2 􏰀ui−1,j − 2ui,j + ui+1,j 􏰁 􏰀ui,j−1 − 2ui,j + ui,j+1 􏰁
leads to the discretised form
  ?**7;
s11 s12 s13 ?**8; ?**8;
S=s s s?**8;  21 22 23?**8;
?**8; s s s?**9;
corresponding to this finite difference scheme. [4 marks] (b) Implement a python function source function.py
    def source_function( x, y, h )
that returns the right-hand side by evaluating the function:
f(x,y) :=
⭺**;1, ifx≥0.1andx≤0.3andy≥0.1andy≤0.3 0, otherwise
.
Include the source code in your answer. [3 marks] 5
31 ** 33
(5)

 Figure 2: Computational domain for problem (4) and the sub-region where the heat source is located (in red).
(c) Modify the solver from Tutorial 7 to numerically solve the diffusion problem (4) for the right-hand side (5).
Solve the linear problem AU = F using the conjugate gradient method (without preconditioning) with the diffusion coefficients μx = 1 and μy = 1, stopping tolerance tol = 10−6, and maxi- mum of 1000 CG iterations. You can use the CG implementation in scipy.sparse.linalg.cg for this problem or code your own implementation.
Plot the solution surface and include the plot in your answer. How many iterations does it take for CG to converge in this case?
[2 marks]
(d) Consider now the use of a preconditioner to accelerate the con- vergence of CG. The incomplete-LU preconditioner approximates the system matrix A ≈ LincUinc by performing Gaussian elimi- nation but setting to zero any elements that are smaller than a dropoff tolerance ε chosen by the user. You can use the imple- mentation provided in scipy.sparse.linalg.spilu to compute
6

the incomplete factors Linc and Uinc.
Write a python implementation myPCG.py of the preconditioned
conjugate gradient from Lecture 18:
            def myPCG( A, b, L, U, tol, maxit )
that solves the preconditioning step for the residual, Mzi+1 = LU zi+1 = ri+1 , using appropriate solution algorithms. Include the source code as part of your answer. [4 marks]
(e) Solve the problem (4) again using your preconditioned CG imple- mentation from (d). Use a dropout tolerance of ε = 0.1 for the incomplete LU-factorisation.
How many nonzero elements (nnz) do the factors Linc and Uinc have in this case?
How many PCG iterations does the problem take to converge to tol = 10−6 now?
[2 marks]
(f) Repeat the experiment from (e) with different values of the dif- fusion coefficients. Solve the problem (4) with μx = 0.1 and μx = 0.01, while keeping the other value at μy = 1. Solve the problem using PCG with the same ILU-preconditioner as before with a dropout tolerance of ε = 0.1. Plot the two respective solu- tions and the respective number of CG iterations. What do you observe?
[5 marks]
3. General guidance and study support
The MS Teams group for COMP53**M Scientific Computation will be used for general support for this assignment. If your question would reveal parts of the answer to any problem, please send a private message to the module leader on MS Teams instead. You can also use the tutorial sessions to ask questions about coursework.
4. Assessment criteria and marking process
Assessment marks and feedback will be available on Minerva within
three weeks of the submission deadline. Late submissions are allowed 7

within 14 days of the original deadline providing that a request for an extension is submitted before the deadline. Standard late penalties apply for submissions without approved extensions.
5. Presentation and referencing
When writing mathematical formulas, use similar notation and sym- bols as during the lectures and tutorials. Hand-written sections for mathematical notation are acceptable but need to be clearly readable.
You may assume theorems and other results that have been presented during lectures and tutorials as known. Any other theorems need to be cited using standard citation practice.
6. Submission requirements
This is an individual piece of work. Submit your answers through Tur- nitin as one PDF document (generated either in Word or with LaTeX). You may use hand-written and scanned pages for mathematical formu- las, but these need to be clearly legible and the document must contain at least some typeset text or Turnitin will reject it. All submissions will be checked for academic integrity.
7. Academic misconduct and plagiarism
Academic integrity means engaging in good academic practice. This involves essential academic skills, such as keeping track of where you find ideas and information and referencing these accurately in your work.
By submitting this assignment you are confirming that the work is a true expression of your own work and ideas and that you have given credit to others where their work has contributed to yours.
8. Assessment/marking criteria grid
Total number of marks is 40, divided as follows:
Exercise 1 (One-dimensional Burgers equation): 20 marks
Exercise 2 (Anisotropic diffusion and conjugate gradient): 20 marks
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:CAN201 代做、代寫 Python語言編程
  • 下一篇:代寫COM6471、代做 java 語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    日本视频中文字幕一区二区三区| 在线日韩一区| 成人四虎影院| 在线视频日韩| 福利片一区二区| 亚洲色图国产| 亚洲成人不卡| 丝袜美腿亚洲色图| 美女一区二区在线观看| 国产一区二区三区免费观看在线| 日韩理论在线| 亚洲一区国产一区| 久久久久久久久久久9不雅视频| 国产精品亚洲欧美日韩一区在线| 亚洲va中文在线播放免费| 狠狠入ady亚洲精品| 国产精品22p| 亚洲第一福利社区| 欧美日本免费| 欧美一区二区三区久久精品茉莉花| 丝袜亚洲另类欧美综合| 欧美69wwwcom| 精品少妇一区| 激情不卡一区二区三区视频在线| 国内久久精品| 日本久久一区| 午夜av成人| 中文在线а√天堂| 免费观看日韩电影| 亚洲深夜影院| 亚洲国产不卡| 亚洲午夜激情在线| 久久久久久久久久久9不雅视频| 日韩精品视频中文字幕| 懂色av色香蕉一区二区蜜桃| 日日夜夜免费精品| 欧美成人黄色| 日韩美女在线| 国产一区二区主播在线| yellow在线观看网址| 久久av一区| 性一交一乱一区二区洋洋av| 亚洲激情亚洲| 亚洲激情女人| 西西人体一区二区| 国产亚洲成人一区| 99在线精品免费视频九九视| 婷婷久久国产对白刺激五月99| 久久久久99| 国户精品久久久久久久久久久不卡 | 在线日韩av| 牲欧美videos精品| 久久婷婷麻豆| 亚洲午夜一区| 一本一道久久综合狠狠老| 1024成人| 伊人久久婷婷| 免费观看成人av| 成人一级福利| 男女羞羞在线观看| 78精品国产综合久久香蕉| 欧美日韩精品一区二区三区视频| 亚洲十八**毛片| 日韩免费在线电影| 在线看片欧美| 欧美精美视频| 91嫩草精品| 天天躁日日躁成人字幕aⅴ| 激情综合网站| 久久福利影视| 超碰国产一区| 久久精品国产网站| 在线欧美激情| 日韩av电影免费观看高清完整版| 日韩免费成人| 99久久夜色精品国产亚洲狼| 亚洲精品在线观看91| 视频在线在亚洲| 伊人久久高清| 亚洲精品色图| 少妇精品在线| 性欧美69xoxoxoxo| 国产精品99在线观看| 成人国产精品| 欧美国产专区| 日韩三级精品| 国产高清久久| 四虎成人精品永久免费av九九| 国产一区二区高清在线| 亚洲欧洲中文字幕| 福利欧美精品在线| 好看不卡的中文字幕| 国产在线看片免费视频在线观看| 主播大秀视频在线观看一区二区| 国产精品黄色| 精品国产一区二区三区噜噜噜| 希岛爱理一区二区三区| 在线成人av观看| 亚洲伦伦在线| 91欧美极品| 先锋a资源在线看亚洲| 国模视频一区| 国内精品久久久久久久影视简单 | 日韩综合在线视频| 日本中文字幕一区二区视频| 久久亚洲在线| 精品国产第一福利网站| 亚洲精品韩国| 里番精品3d一二三区| 久热re这里精品视频在线6| 欧美在线高清| 亚洲视频国产精品| 免费在线一区观看| 日韩精品欧美精品| 欧美午夜寂寞| 欧美亚洲日本精品| 国产精品**亚洲精品| 亚洲高清不卡| 黄色精品视频| 在线一区二区三区视频| 亚洲专区一区| 欧美日韩亚洲三区| 久久国产电影| 日韩在线欧美| 综合视频一区| 久久久久久久欧美精品| 综合日韩在线| 欧美jjzz| 日韩国产在线一| 中文字幕中文字幕精品| 成人福利av| 日韩免费高清视频网站| 久热精品视频| 国产区精品区| 丝袜美腿亚洲一区| 亚洲青青久久| 亚洲欧美日本日韩| 中文字幕一区二区av | 噜噜噜91成人网| 中文字幕日本一区| 一区二区亚洲精品| 欧美黄色免费| 亚洲欧洲一区二区天堂久久| 欧美日韩 国产精品| 91精品福利| 中文字幕一区二区三区在线视频| 精品在线播放| 国产精品hd| 日韩一区二区久久| 91麻豆精品国产综合久久久| 伊人成人网在线看| 欧美午夜在线播放| 水野朝阳av一区二区三区| 国产欧美高清视频在线| 欧美gayvideo| 亚洲小说春色综合另类电影| 蜜臀久久精品| 久久久久久9| 日韩国产在线观看| 伊人精品视频| 亚洲欧美校园春色| 中文字幕在线视频久| 在线视频亚洲欧美中文| 97精品国产99久久久久久免费| 成人羞羞视频播放网站| 欧美aⅴ一区二区三区视频| 欧美日韩国产探花| 亚洲图片久久| 亚洲精品在线影院| 激情综合在线| 亚洲一区av| av在线播放资源| 欧美偷窥清纯综合图区| 麻豆精品久久久| 日av在线不卡| 国产精品videossex| 久久精品麻豆| 国产精品腿扒开做爽爽爽挤奶网站| 少妇精品久久久一区二区三区| 日韩电影一区| 激情综合网站| 日本超碰一区二区| 久久精品国产一区二区| 午夜一级久久| 精品国产乱码久久久久久果冻传媒| 久久精品理论片| 日韩主播视频在线| 鲁大师精品99久久久| 综合久久一区| 欧美三级精品| 亚洲视频成人| 日本国产精品| 欧美男男gaytwinkfreevideos| 久久xxx视频| 亚洲一区亚洲| 99精品视频精品精品视频| 亚欧日韩另类中文欧美| 国产精品综合色区在线观看| 久久最新视频| 欧美a级一区|