加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

INT305 代做、代寫 Python 語言編程

時間:2023-12-10  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Assessment Lab
INT305 – ASSESSMENT 2
Assessment Number 2 Contribution to Overall Marks 15% Submission Deadline 08/12/2023
Assessment Objective
This assessment aims at evaluating students’ ability to exploit the deep learning knowledge, which is accumulated during lectures, and after-class study, to analyze, design, implement, develop, test and document the images classification using CNN framework. The assessment will be based on the Pytorch software.
General Guidelines
1. The descriptions in the Problem Specifications are required to be analyzed with mathematic equations, combined with the explanations of all elements in each equation.
2. The modified parts of the source codes are required to include in the report.
3. The final classification performance that you obtain should be reported in the lab report. Meanwhile, the screenshots of the final performance results are also required in the report.
4. For the final performance results that you obtained, the numeric quantitative results are required. In addition, is also important to include some subjective image examples in the report.
5. Students need to conduct the coding and experiment all by yourself. The obtained results cannot be shared, and each student should analyze the results and write the report individually.
          
INT305 Assessment Lab
Image Object Classification (CIFAR-10)
Overall Description:
This lab is to use the Pytorch software and CNN (Convolutional Neural Network) framework for image object classification. Image classification aims to predict the category of object in an image (one image can only have one object in it). It has attracted much attention within the computer vision community in recent years as an important component for computer vision applications, such as self-driving vehicles, video surveillance and robotics. It is also the foundation of other computer vision research topics, such as object detection and instance segmentation.
CNN is a framework with both feature extraction and classification using deep convolutional neural network. A typical CNN pipeline is shown below.
Figure 1. CNN image classification pipeline.
The Dataset we will use is CIFAR-10 dataset, it contains 60000 **x** colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The followings are examples of CIFAR-10 dataset.
   
INT305
Assessment Lab
 Problem Specifications:
Figure 2. Examples of CIFAR-10 dataset.
 1. Please describe the 2 key components in the CNN framework: the convolutional kernel and the loss functions used in the framework. (20%)
2. Please train (or fine-tune) and test the framework on CIFAR-10 and report the final accuracy performance that you have achieved. Please also report some well classified and misclassified images by including the images and corresponding classification confidence value. (40%).
3. Propose your own method to further improve the classification performance or reduce the model size. You need also compare different methods with the performance you obtained and explain why. The final classification accuracy is not the most important part, you may better refer to some latest published papers and code these state of the art methods to improve the performance. The explanation and analysis of your adopted method is highly related to your final score. (40%)

INT305 Assessment Lab Environment Preparation:
1 Install Anaconda
1.1 Install Anaconda on Windows
Anaconda is open-source software that contains Jupyter, spyder, etc that is used for large data processing, data analytics, heavy scientific computing.
Conda is a package and environment management system that is available across Windows, Linux, and MacOS, similar to PIP. It helps in the installation of packages and dependencies associated with a specific language like python, C++, Java, Scala, etc. Conda is also an environment manager and helps to switch between different environments with just a few commands.
Step 1: Visit this website https://www.anaconda.com/products/individual-d and download the Anaconda installer.
Step 2: Click on the downloaded .exe file and click on Next.
Step 3: Agree to the terms and conditions.
   
INT305 Assessment Lab
 Step 4: Select the installation type.
 Step 5: Choose the installation location.

INT305 Assessment Lab
 Step 6: Now check the checkbox to add Anaconda to your environment Path and click Install.
This will start the installation.
Step 7: After the installation is complete you’ll get the following message, here click on Next.
 
INT305 Assessment Lab
 Step 8: You’ll get the following screen once the installation is ready to be used. Here click on Finish.
Verifying the installation:
Now open up the Anaconda Power Shell prompt and use the below command to check the conda version:
coda -V
If conda is installed successfully, you will get a message as shown below:
 
INT305 Assessment Lab
 1.2 Install Anaconda on Linux
Prerequisites
Firstly, open terminal on your Ubuntu system and execute the command mentioned below to update packages repository:
sudo apt update
Then install the curl package, which is further required for the downloading the installation script.
sudo apt install curl -y
Step 1 – Prepare the Anaconda Installer
Now I will go to the /tmp directory and for this purpose we will use cd command. cd /tmp
Next, use the curl command line utility to download the Anaconda installer script from the official site. Visit the Anaconda installer script download page to check for the latest versions. Then, download the script as below:
curl --output anaconda.sh https://repo.anaconda.com/archive/Anaconda3- 2021.05-Linux-x86_64.sh
To check the script SHA-256 checksum, I will use this command with the file name, though this step is optional:
sha256sum anconda.sh
Output:
25e3ebae8**5450ddac0f5c93f89c467 anaconda.sh

INT305 Assessment Lab Check if the hash code is matching with code showing on download page.
Step 2 – Installing Anaconda on Ubuntu
Your system is ready to install Anaconda. Let’s move to the text step and execute the Anaconda installer script as below:
bash anaconda.sh
Follow the wizard instructions to complete Anaconda installation process. You need to provide inputs during installation process as described below:
01. Use above command to run the downloaded installer script with the bash shell.
02. Type “yes” to accept the Anaconda license agreement to continue.
03. Verify the directory location for Anaconda installation on Ubuntu 20.04 system. Just hit Enter to continue installer to that directory.
04. Type “yes” to initialize the Anaconda installer on your system.
05. You will see the below message on successful Anaconda installation on Ubuntu 20.04 system.
        
INT305 Assessment Lab
 The Anaconda Installation Completed Sucessfully on your Ubuntu system. Installer added the environment settings in .bashrc file. Now, activate the installation using following command:
source ~/.bashrc
Now we are in the default base of the programming environment. To verify the installation we will open conda list.
conda list
Output:
# packages in environment at /home/tecadmin/anaconda3:
#
# Name Version _ipyw_jlab_nb_ext_conf 0.1.0
Build Channel py38_0
main
  pyhd3eb1b0_0
       py38_0
        py38_0
         py38_0
   pyhd3eb1b0_1
py38h06a4308_1
py_0
_libgcc_mutex alabaster anaconda anaconda-client anaconda-navigator anaconda-project anyio
appdirs
 0.1
 0.7.12
2021.05
  1.7.2
  2.0.3
  0.9.1
2.2.0 1.4.4
2 Install and configure PyTorch on your machine.
First, you'll need to setup a Python environment.
Open Anaconda manager via Start - Anaconda3 - Anaconda PowerShell Prompt and test your versions:
You can check your Python version by running the following command: python –-version
You can check your Anaconda version by running the following command: conda –-version
Now, you can install PyTorch package from binaries via Conda. 1 Navigate to https://pytorch.org/.
  
INT305 Assessment Lab
Select the relevant PyTorch installation details: •PyTorch build – stable.
•Your OS
•Package – Conda •Language – Python •Compute Platform – CPU.
 2 Open Anaconda manager and run the command as it specified in the installation instructions.conda install pytorch torchvision torchaudio cpuonly -c pytorch

INT305 Assessment Lab
 3 Confirm and complete the extraction of the required packages.
 Let’s verify PyTorch installation by running sample PyTorch code to construct a randomly initialized tensor.

INT305 Assessment Lab 4 Open the Anaconda PowerShell Prompt and run the following command.
python
import torch
x = torch.rand(2, 3) print(x)
The output should be a random 5x3 tensor. The numbers will be different, but it should look similar to the below.
 References
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代做ECM2418、代寫 java,Python 程序設計
  • 下一篇:CAN201 代做、代寫 Python語言編程
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    亚洲精品第一| 日韩视频中文| 麻豆精品在线视频| 亚洲在线视频| 老牛国内精品亚洲成av人片| 日韩高清一级片| 欧美mv日韩| 亚洲高清毛片| 午夜a一级毛片亚洲欧洲| 午夜精品成人av| 在线亚洲激情| 动漫视频在线一区| 国产精品一区免费在线| yw.尤物在线精品视频| 国产一区二区精品| 亚洲成人二区| 日本一区二区乱| 亚洲精品女人| 精品极品在线| 日韩中文字幕不卡| 久久麻豆精品| 国产精品22p| 国产日产一区| 日本午夜精品一区二区三区电影| 在线看片福利| 国产深夜精品| 波多野结衣在线播放一区| 日韩在线视频一区二区三区| 最新国产精品| 日韩黄色三级在线观看| 不卡av播放| 久久午夜视频| 91久久黄色| 一区三区在线欧| 狼人精品一区二区三区在线| 日韩激情综合| 日韩av网站在线免费观看| 影音先锋亚洲电影| 一区二区三区福利| 99欧美精品| 激情亚洲影院在线观看| 蜜臀av一区二区在线观看| 红桃视频国产一区| 国产一区二区三区四区三区四| 国产精品欧美大片| 亚洲国产视频二区| 日韩av在线发布| 综合干狼人综合首页| 亚洲精品字幕| 日本美女一区二区三区| 欧美另类激情| 日韩成人综合网| 国产成人精品一区二区三区视频| 日韩中文在线电影| 日韩欧美中字| 欧美亚洲黄色| 欧美成人毛片| 日日摸夜夜添夜夜添国产精品| 久久精品国产99久久6| 国产一区二区久久久久| 色8久久久久| 国产欧美一级| 日本成人在线电影网| 亚洲乱码视频| 欧美高清hd| 亚洲精品国模| 亚洲理论电影| 国产一区福利| 久久亚洲国产| 99国产精品久久久久久久成人热| 伊人青青综合网| 亚洲综合不卡| 91欧美在线| yw.尤物在线精品视频| 久久综合综合久久综合| 久久一区国产| 9999精品视频| 久久三级中文| 91精品蜜臀一区二区三区在线| 欧美一区二区性| 亚洲综合社区| 亚洲伊人av| 韩国精品视频在线观看| 日本不卡一区二区| 最近国产精品视频| 97青娱国产盛宴精品视频| 天堂资源在线亚洲| 亚洲专区免费| 色网在线免费观看| 美女在线视频一区| 97久久中文字幕| 黑色丝袜福利片av久久| 国产韩日影视精品| 天堂va蜜桃一区二区三区| 日韩欧美一区二区三区在线视频| 国产精品一区亚洲| 国产精品午夜一区二区三区| 亚洲超碰在线观看| 在线观看免费一区二区| 91麻豆国产自产在线观看亚洲| 精品三级在线| 日韩激情中文字幕| 竹菊久久久久久久| 日产精品一区二区| 日韩精品电影在线| 日本一区二区三区视频在线看| 秋霞欧美视频| 亚洲尤物在线| 亚洲国产伊人| 日韩精彩视频在线观看| 在线日韩视频| 日韩精品一级中文字幕精品视频免费观看 | 婷婷久久综合| 日韩电影免费在线观看| 亚洲精品资源| 日本久久成人网| 日韩综合在线| 麻豆精品在线视频| 成人中文字幕视频| 蜜桃视频在线观看一区二区| 一区二区毛片| 精品国产一区二区三区不卡蜜臂 | 蜜臀精品一区二区三区在线观看| 美女高潮久久久| 极品束缚调教一区二区网站| 日韩制服丝袜先锋影音| 在线观看视频日韩| 久久久国产精品一区二区中文| 蜜桃91丨九色丨蝌蚪91桃色| 亚洲久久视频| 国产精品av一区二区| 成人午夜亚洲| 91免费精品国偷自产在线在线| 久久久久久久高潮| 亚洲电影影音先锋| 免费高潮视频95在线观看网站| 国产一区二区三区四区| 红桃视频亚洲| 欧美日韩 国产精品| 国户精品久久久久久久久久久不卡| 日本高清不卡一区二区三区视频| 亚洲人成网亚洲欧洲无码| 中文在线一区| 欧美激情1区| 午夜激情久久| 99精品视频免费观看| 秋霞欧美视频| 色综合.com| 久久国产亚洲| 涩涩涩久久久成人精品| 日韩精品欧美| 久久精品97| 极品日韩av| 久久久久影视| 亚洲精品1234| 国产精品最新| 国产精品毛片一区二区在线看| 同性恋视频一区| 成入视频在线观看| 精品国产不卡一区二区| 日韩欧美中字| 久久久成人网| 另类欧美日韩国产在线| 午夜电影亚洲| 国内精品视频| 丝袜亚洲精品中文字幕一区| 成人精品在线| 日韩.com| 久久成人福利| 亚洲国产高清一区| 婷婷成人基地| 成人久久精品| 日本欧美国产| 成人综合专区| 久久精品亚洲| 国产美女一区| 香蕉国产成人午夜av影院| 国产伦子伦对白在线播放观看| 国产图片一区| 亚洲日本免费| 日韩在线卡一卡二| 操欧美女人视频| 国产欧美一区| 国内综合精品午夜久久资源| 亚洲综合精品四区| 美女久久精品| 国产欧美日韩亚洲一区二区三区| 亚洲成人日韩| 日产欧产美韩系列久久99| 69堂精品视频在线播放| 欧美军人男男激情gay| 国产精品亚洲四区在线观看| 天堂а√在线最新版中文在线| 久久影视一区| 国产亚洲电影| 欧美成人xxxx| 成人精品视频| 欧洲美女日日| 一区视频网站| 综合视频在线|