加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務(wù)合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務(wù)合肥法律

代寫DAT 560M、代做R編程語言

時(shí)間:2023-12-09  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯(cuò)



DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 1 -
DAT 560M: Big Data and Cloud Computing
Fall 2023, Mini B
Homework #4
INSTRUCTIONS
1. This is an individual assignment. You may not discuss your approach to solving these
questions with anyone, other than the instructor or TA.
2. Please include only your Student ID on the submission.
3. The only allowed material is:
a. Class notes
b. Content posted on Canvas
c. Utilize ONLY the codes we practice. Anything beyond will not get any point!
4. You are not permitted to use other online resources.
5. The physical submission is due by the next lab.
6. There will be TA office hours. See the schedule on Canvas.
ASSIGNMENT
In this assignment, we are going to practice Spark on a file named loans.csv and the file is located
in our database. In case you don’t have the file, you can get it from the dataset folder on the server.
http://server-ip/dataset/loans.csv
This dataset has information about loans distributed to poor and financially excluded people
around the world by a company called Kiva. There are a few number of columns in the dataset
and we would like to do an analysis on that by pyspark. Please answer each question and provide
a screenshot.
Part ** Initialize Spark (5 pts)
** Start the PySpark engine and load the file. This homework is a little bit complex and its
better that we assign more resources. Then, when assigning your engine, you can assign
all available CPU cores on your machine to the Spark to perform faster. To do that, just
simply put local[*] instead of local (look at the following screenshot). If it crashes or
doesn’t work properly, you are more than welcome to go back to the normal initialization
process. (2 pts)
DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 2 -
2- Get to know the dataset and do a preliminary examination (for example type of columns,
summary, …) (2 pts)
3- Here, we have two identifier for the country of the loan receiver, country, and
country_code and so one is enough. Then please drop country_code. (1 pts)
Part 2- Data analysis (50 pts)
4- Find the three most loan awarded sector when the loan amount is larger than 1000. (5 pts)
5- For the top sector you found in Q4, list 6 most used activities. (5 pts)
6- Find the number of given loans per year. For that, use the year from posted_time. You
may add a new column called “year”. (5 pts)
7- Using SQL syntax, list the number of loans per sector in decreasing order where the
countries are the 3 top countries in terms of the number of received loans. (10 pts)
8- Find the top 20 countries in terms of the total loan amount they have received where the
use of the loan include the word “stock”. You may use SQL. (5 pts)
9- Do a wordcount on the “use” column. For that, consider all lower case. If you can, it’s
great to remove stopwords and then do the wordcount. It’s OK if you don’t know how to
do so. (10 pts)
10- Group the loans into 5 categories. If the loan amount is equal or larger than 50000, call it
“super large”. If less but larger or equal to 10000, call it “large”. If less but larger or
equal to 5000, call it “medium”. If less but larger or equal to 1000, call it “small”. If less,
call it “tiny”. Then, find the number of given loans to each category per gender. For
gender, only consider “male” or “female”. (10 pts)
Part 3- Feature engineering (10 pts)
1** Let’s find how many people are involved in each loan application. To find it out, look at
gender column. You can see sometimes it is one value, and sometimes more than one.
Count it for each loan and add it to the dataframe. (10 pts)
DAT 560M – Big Data and Cloud Computing 2023 – Homework #4
- 3 -
Part 4- Machine learning (35 pts)
12- Now let’s focus only on Retail, Agriculture, and Food sectors the remove the rest of the
rows (10 pts).
13- We like to predict the loan_amount based on sector, country, term_in_months, year, and
the new attribute you added in Q11 and drop the rest of the columns. (5 pts)
14- Prepare your data to do a prediction task. We are interested in predicting the loan amount
based on the rest of the features. (10 pts)
15- Perform a regression task for and find the Mean Squared Error and R-square of the model
(80% training, 20% testing) (10 pts). 
請(qǐng)加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機(jī)打開當(dāng)前頁
  • 上一篇:CSCI 2122代寫、代做C++設(shè)計(jì)程序
  • 下一篇:代寫ISOM 2007、代做 Python 程序設(shè)計(jì)
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評(píng)軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計(jì)優(yōu)化
    有限元分析 CAE仿真分析服務(wù)-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    急尋熱仿真分析?代做熱仿真服務(wù)+熱設(shè)計(jì)優(yōu)化
    出評(píng) 開團(tuán)工具
    出評(píng) 開團(tuán)工具
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    挖掘機(jī)濾芯提升發(fā)動(dòng)機(jī)性能
    海信羅馬假日洗衣機(jī)亮相AWE  復(fù)古美學(xué)與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機(jī)亮相AWE 復(fù)古美學(xué)與現(xiàn)代
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士4號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
    合肥機(jī)場(chǎng)巴士3號(hào)線
  • 短信驗(yàn)證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務(wù) | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責(zé)聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號(hào)-3 公安備 42010502001045

    岛国精品在线| 999国产精品永久免费视频app| av中文在线资源库| 女同一区二区三区| 96sao精品免费视频观看| 天堂中文在线播放| 国产字幕视频一区二区| 亚洲欧洲美洲国产香蕉| 国产91亚洲精品久久久| 亚洲欧美日韩视频二区| 欧美激情网址| 欧美美乳视频| 看片网站欧美日韩| 国产免费拔擦拔擦8x高清在线人| 免费久久久久久久久| 日韩欧美高清一区二区三区| 欧美喷水视频| 欧美激情福利| 三级在线看中文字幕完整版| 影院欧美亚洲| 亚洲调教视频在线观看| av综合网站| 国内精品久久久久久99蜜桃| 国产精品久久久久9999高清| 亚洲插插视频| 欧美激情电影| 免费在线视频一区| 国产精品亚洲片在线播放| 交100部在线观看| 国产精品yjizz视频网| 狠狠入ady亚洲精品| 激情久久综合| 久久精品官网| 视频福利一区| 欧美aaaaaaaa牛牛影院| 亚洲免费一区三区| 日韩av在线播放中文字幕| 亚洲综合伊人| 亚洲情侣在线| 国产精品啊啊啊| 另类欧美日韩国产在线| 久久福利在线| 久久精品97| 国产精品久久久久久久免费软件| 婷婷六月国产精品久久不卡| 国产在线精彩视频| 狼人综合视频| 日韩国产欧美| 91成人在线| 色综合久久久| 青青草成人在线观看| 99精品视频免费观看视频| 久久精品系列| 亚洲全部视频| 国内自拍一区| 欧美欧美在线| 日韩1区2区3区| 一区二区网站| 国产suv精品一区| 精品五月天堂| 免费成人av| 国产婷婷精品| 色无极亚洲影院| xxxxx性欧美特大| 成人高清一区| 国内视频精品| 亚洲另类av| 欧美视频亚洲视频| 久久激情婷婷| 妖精视频成人观看www| 日韩av久操| 91另类视频| 日本在线不卡视频一二三区| 国产激情综合| 亚洲成人五区| 亚洲夜间福利| 天堂成人免费av电影一区| 欧美7777| 日本va欧美va瓶| 亚洲裸色大胆大尺寸艺术写真 | 欧美久久久网站| 亚洲精品人人| 精品国产鲁一鲁****| 极品av少妇一区二区| 香蕉精品999视频一区二区| 激情国产在线| 99精品免费网| 亚洲v天堂v手机在线| 日韩电影在线一区二区三区| 欧美成人专区| 国产精品99久久免费观看| 欧美aa国产视频| 97精品视频在线看| 久久只有精品| 午夜电影一区| 黄色av成人| 人人鲁人人莫人人爱精品| 日本欧美久久久久免费播放网| 国产一区二区欧美| 日韩精品午夜| 蜜臀av亚洲一区中文字幕| 美腿丝袜在线亚洲一区| 欧美热在线视频精品999| 99成人超碰| 中文字幕成在线观看| 亚洲日本黄色| 精品国产中文字幕第一页 | 麻豆精品一区二区av白丝在线| 国产欧美一区二区三区精品观看| 美女av一区| av中文字幕在线观看第一页| 欧美日韩综合| 91精品国产成人观看| av资源新版天堂在线| www.久久久久爱免| 精品在线99| 国产一区二区av在线| 日韩第一区第二区| 红桃视频国产一区| 国产人成精品一区二区三| 亚洲亚洲一区二区三区| 久久不射网站| 一区二区日韩欧美| 国产真实久久| 欧美a视频在线| 欧美成人基地| 精品丝袜在线| 亚洲精品一区国产| 国产精品13p| 国产中文字幕一区二区三区| 欧美日韩日本国产亚洲在线| 久久精品av麻豆的观看方式| 国产精品网站在线看| 天堂网在线最新版www中文网| 少妇精品久久久| 首页亚洲欧美制服丝腿| 午夜亚洲福利| 91久久高清国语自产拍| 美腿丝袜在线亚洲一区| 久久精品导航| 美女一区二区久久| 欧美丝袜一区| 国产精品亚洲产品| 亚洲欧美亚洲| 影音先锋一区| 黄色精品网站| 国产一区二区观看| 丝袜美腿亚洲色图| 日韩av中文字幕一区| 四季av一区二区三区免费观看| 亚洲综合小说图片| а√在线中文在线新版| 亚洲精品视频一二三区| 欧美一级鲁丝片| 美女国产精品| 妞干网免费在线视频| 国产无遮挡裸体免费久久| 精品亚洲美女网站| 久久国产亚洲| 欧美精品二区| 成人激情视频| 精品大片一区二区| 一区二区国产精品| 黄色一区二区三区四区| 国产欧美日韩影院| 欧美裸体视频| 99视频精品全部免费在线视频| 日韩精品五月天| 香蕉成人久久| 美国十次综合久久| 欧美一区二区三区久久精品茉莉花 | 日韩精品视频中文字幕| 天堂中文在线播放| 欧美综合另类| 久久99高清| 亚洲精品大片| 亚洲欧美日韩专区| 成人自拍在线| 亚洲人成久久| 国产精品久久观看| 久久亚洲国产| 国产一区2区| 国产精品99久久久久久董美香 | 视频国产精品| 久久精品国产精品亚洲综合| 国产偷自视频区视频一区二区| 日韩激情综合| 亚洲日本国产| 日韩久久久久| 女厕嘘嘘一区二区在线播放| 日韩激情一区二区| 美女视频网站黄色亚洲| 日韩精品一卡二卡三卡四卡无卡| 高潮久久久久久久久久久久久久| 另类综合日韩欧美亚洲| 欧美疯狂party性派对| 欧美日韩国产免费观看视频| 日韩激情欧美| 91麻豆精品一二三区在线| 日韩精品免费观看视频 |