加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

CS 202代寫、代做Operating Systems設計

時間:2023-12-07  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



CS 202: Advanced Operating Systems
University of California, Riverside
Lab #3: xv6 Threads
Due: 12/02/2022, Friday, 11:59 p.m. (Pacific time)
Overview
In this project, you will be adding kernel-level thread support to xv6. First, you will implement a new
system call to create a kernel-level thread, called clone(). Then, using the clone() system call, you will
build a simple user-level library consisting of thread_create(), lock_acquire() and
lock_release() for thread management. Finally, you will show these things work by using a user-level
multi-threaded test program.
Before your start:
1. In Makefile, set the number of CPUs to 3 (CPUS := 3). You may debug your code using one
CPU, your demo and submission should have CPUS := 3.
2. Replace kernel/trampoline.S with the one provided at the end of this document. This new
trampoline.S is also available to download from eLearn.
Background: xv6 virtual address space memory layout
In xv6, every process has its own page table that defines a virtual address space used in the user mode.
When a process enters the kernel mode, the address space is switched to the kernel’s virtual address space.
Because of this, each process has separate stacks for the kernel and user spaces (aka. user stack and kernel
stack). Also, in xv6, each PCB maintains separate objects to store process’s register values:
struct proc {
 …
struct trapframe *trapframe; // data page for trampoline.S
struct context context; // swtch() here to run process
trapframe stores registers used in the user space when entering the kernel mode. context is for registers
in the kernel space when context-switched to another process.
Below figure illustrates the layout of a process’s virtual address space in xv6-riscv.
2
In the virtual address space, user text, data, and user stack are mapped at the bottom. At top, you can see
two special pages are mapped: trampoline and trapframe, each has the size of PGSIZE (= 4096 bytes).
The trampoline page maps the code to transition in and out of the kernel. The trapframe page maps
the PCB’s trapframe object so that it is accessible by a trap handler while in the user space (see Chapter
4 of the xv6 book for more details).
The mapping of those pages to process’s address space is done when a process is created. In fork(), it
calls proc_pagetable() which allocates a new address space and then performs mappings of
trampoline and trapframe pages. For example, in proc_pagetable()
if(mappages(pagetable, TRAPFRAME, PGSIZE,
(uint64)(p->trapframe), PTE_R | PTE_W) < 0){ ...
This means mapping the kernel object p->trapframe to the user address space defined by pagetable
at the memory location of TRAPFRAME.
Part 1: Clone() system call
In this part, the goal is to add a new system call to create a child thread. It should look like:
int clone(void *stack);
clone() does more or less what fork() does, except for the following major differences:
• Address space: Instead of creating a new address space, it should use the parent's address space.
This means a single address space (and thus the corresponding page table) is shared between the
parent and all of its children. Do not create a separate page table for a child.
• stack argument: This pointer argument specifies the starting address of the user-level stack
used by the child. The stack area must have been allocated by the caller (parent) before the call to
clone is made. Thus, inside clone(), you should make sure that, when this syscall is returned, a
child thread runs on this stack, instead of the stack of the parent. Some basic sanity check is required
for input parameters of clone(), e.g., stack is not null.
3
Similar to fork(), the clone() call returns the PID of the child to the parent, and 0 to the newly-created
child thread. And of course, the child thread created by clone() must have its own PCB. The number of
child threads per process is assumed to be at most 20.
To manage threads, add an integer type thread_id variable to PCB. The value of thread_id is 0 for the
parent process and greater than 0 (e.g., 1, 2, …) for its child threads created using clone().
There are also some modifications required for the wait() syscall.
• wait(): The parent process uses wait() to wait for a child process to exit and returns the child’s
PID. Also, wait() frees up the child’s resources such as PCB, memory space, page table, etc. This
becomes tricky for child threads created by clone() because some resources are now shared
among all the threads of the same process. Therefore, if the child is a thread, wait() must
deallocate only the thread local resources, e.g., clearing PCB and freeing & unmapping its own
trapframe, and must not deallocate the shared page table.
For simplicity, we will assume that only parent process calls clone() – a thread created by clone()
does not call clone() to create another child thread. Also, assume that a process does not call clone()
more than 20 times (i.e., up to 20 child threads). It is fine to assume that only the parent uses wait() and
the parent is the last one to exit (i.e., after all of its child threads have exited). In addition, parent and child
do not need to share file descriptors. These assumptions will make the implementation a lot easier.
Tips:
• The best way to start would be creating clone() by duplicating fork(). fork() uses
allocproc() to allocate PCB, trapframe, pagetable, etc. However, clone() must not allocate a
separate page table because the parent and child threads should share the same page table. But each
thread still needs a separate trapframe. So, modify allocproc() or create a new function (e.g.,
allocproc_thread) for clone().
• In clone(), you need to specify the child’s user stack’s starting address (hint: trapframe->sp).
• In clone(), you should map each thread's
trapframe page to a certain user space with
no overlap. One simple way would be to map
it below the parent's trapframe location. For
example, see the figure on the right. If your
child thread has a thread ID (> 0), map it to
TRAPFRAME - PGSIZE * (thread ID).
So your first child thread's trapframe is
mapped at TRAPFRAME - PGSIZE, second
one at TRAPFRAME - PGSIZE * 2, and so
on. This can easily avoid overlap.
TRAPFRAME
trapframe
trapframe …
TRAPFRAME - PGSIZE
TRAPFRAME – 2*PGSIZE
Parent’s
Child thread 1
Child thread 2 …

4
• You also need to tell the kernel explicitly the new trapframe locations for your child threads.
Update kernel/trampoline.S as explained earlier. Then, at the end of usertrapret() in
kernel/trap.c, change
 ((void (*)(uint64))trampoline_userret)(satp);
to
 ((void (*)(uint64,uint64))trampoline_userret)(TRAPFRAME - PGSIZE * p->thread_id, satp);
for child threads. Normal processes (or thread ID == 0) should continue to use the default
TRAPFRAME address as follows:
 ((void (*)(uint64,uint64))trampoline_userret)(TRAPFRAME, satp);
• Trampoline (not trapframe) is already mapped by the parent and it can be shared with childs. So
you must not map it again to the page table when creating child threads (doing so will crash).
Only map the trapframe of each child (see mappages() function in the background).
• wait() uses freeproc() to deallocate child’s resources, so you will need to make appropriate
changes to freeproc().
Part 2: User-level thread library
You need to implement a user-level thread library in user/thread.c and user/thread.h. How to
create a library? Once you write user/thread.c, find the line starting with ULIB in Makefile and
modify as follows:
ULIB = $U/ulib.o $U/usys.o $U/printf.o $U/umalloc.o $U/thread.o
This will compile user/thread.c as a library and make it usable by other user-level programs that
include user/thread.h.
The first thread library routine to create is thread_create():
int thread_create(void *(start_routine)(void*), void *arg);
You can think of it as a wrapper function of clone(). Specifically, this routine must allocate a user stack
of PGSIZE bytes, and call clone() to create a child thread. Then, for the parent, this routine returns 0 on
success and -1 on failure. For the child, it calls start_routine() to start thread execution with the input
argument arg. When start_routine() returns, it should terminate the child thread by exit().
Your thread library should also implement simple user-level spin lock routines. There should be a type
struct lock_t that one uses to declare a lock, and two routines lock_acquire() and
lock_release(), which acquire and release the lock. The spin lock should use the atomic test-and-set
operation to build the spin lock (see the xv6 kernel to find an example; you can use GCC’s built-in atomic
operations like __sync_lock_test_and_set). One last routine, lock_init(), is used to initialize the lock
as need be. In summary, you need to implement:
struct lock_t {
uint locked;
};
5
int thread_create(void *(start_routine)(void*), void *arg);
void lock_init(struct lock_t* lock);
void lock_acquire(struct lock_t* lock);
void lock_release(struct lock_t* lock);
These library routines need be declared in user/thread.h and implemented in user/thread.c. Other
user programs should be able to use this library by including the header "user/thread.h".
Tips: In RISC-V, the stack grows downwards, as in most other architectures. So you need to give the
correct stack starting address to clone() for the allocated stack space.
How to test:
We will be using a simple program that uses thread_create() to create some number of threads. The
threads will simulate a game of frisbee, where each thread passes the frisbee (token) to the next thread. The
location of the frisbee is updated in a critical section protected by a lock. Each thread spins to check the
value of the lock. If it is its turn, then it prints a message, and releases the lock. Below shows the program
code. This program should run as-is. Do not modify. Add this program as user/lab3_test.c
#include "kernel/types.h"
#include "kernel/stat.h"
#include "user/user.h"
#include "user/thread.h"
lock_t lock;
int n_threads, n_passes, cur_turn, cur_pass;
void* thread_fn(void *arg)
{
int thread_id = (uint64)arg;
int done = 0;
while (!done) {
lock_acquire(&lock);
 if (cur_pass >= n_passes) done = 1;
 else if (cur_turn == thread_id) {
 cur_turn = (cur_turn + 1) % n_threads;
printf("Round %d: thread %d is passing the token to thread %d\n",
 ++cur_pass, thread_id, cur_turn);
 }
 lock_release(&lock);
 sleep(0);
}
return 0;
}
int main(int argc, char *argv[])
{
if (argc < 3) {
printf("Usage: %s [N_PASSES] [N_THREADS]\n", argv[0]);
 exit(-1);
}
6
n_passes = atoi(argv[1]);
n_threads = atoi(argv[2]);
cur_turn = 0;
cur_pass = 0;
lock_init(&lock);
for (int i = 0; i < n_threads; i++) {
thread_create(thread_fn, (void*)(uint64)i);
}
for (int i = 0; i < n_threads; i++) {
wait(0);
}
printf("Frisbee simulation has finished, %d rounds played in total\n", n_passes);
exit(0);
}
It takes two arguments, the first is the number of rounds (passes) and the second is the number of threads
to create. For example, for 6 rounds with 4 threads:
$ lab3_test 6 4
Round 1: thread 0 is passing the token to thread 1
Round 2: thread 1 is passing the token to thread 2
Round 3: thread 2 is passing the token to thread 3
Round 4: thread 3 is passing the token to thread 0
Round 5: thread 0 is passing the token to thread 1
Round 6: thread 1 is passing the token to thread 2
Frisbee simulation has finished, 6 rounds played in total!
$
Test your implementation with up to 20 threads on 3 emulated CPUs.
The Code and Reference Materials
Download a fresh copy of xv6 from the course repository and add the above-mentioned functionalities.
This Lab may take additional readings and through understanding of the concepts discussed in the
handout. Especially, Chapters 2 and 4 of the xv6 book discusses the essential background for this Lab.
What to submit:
Your submission should include:
(1) XV6 source code with your modifications (‘make clean’ to reduce the size before submission)
(2) Writeup (in PDF). Give a detailed explanation on the changes you have made (Part 1 & 2). Add
the screenshots of the frisbee program results for “lab3_test 10 3” and “lab3_test 21 20”. Also, a
brief summary of the contributions of each member.
(3) Demo video showing that all the functionalities you implemented can work as expected, as if you
were demonstrating your work in person. Demonstrate the results of “lab3_test 10 3” and
“lab3_test 21 20” on three CPUs. Your video should show that xv6 is running with three CPUs
(e.g., ‘hart 1 starting’ and ‘hart 2 starting’ messages when booting up).
7
Grades breakdown:
• Part I: clone() system call: 45 pts
o clone() implementation
o modifications to wait()
o other related kernel changes
• Part II: user-level thread library: 25 pts
o thread_create() routine
o spinlock routines
• Writeup and demo: 30 pts
Total: 100 pts
8
Appendix: kernel/trampoline.S
# # code to switch between user and kernel space. # # this code is mapped at the same virtual address # (TRAMPOLINE) in user and kernel space so that # it continues to work when it switches page tables.
#
# kernel.ld causes this to be aligned # to a page boundary. #
.section trampsec
.globl trampoline
trampoline:
.align 4
.globl uservec
uservec: # # trap.c sets stvec to point here, so # traps from user space start here, # in supervisor mode, but with a # user page table. # # sscratch points to where the process's p->trapframe is # mapped into user space, at TRAPFRAME. # # swap a0 and sscratch # so that a0 is TRAPFRAME csrrw a0, sscratch, a0
 # save the user registers in TRAPFRAME sd ra, 40(a0) sd sp, 48(a0) sd gp, 56(a0) sd tp, 64(a0) sd t0, 72(a0) sd t1, 80(a0) sd t2, 88(a0) sd s0, 96(a0) sd s1, 104(a0) sd a1, 120(a0) sd a2, 128(a0) sd a3, 136(a0) sd a4, 144(a0) sd a5, 152(a0) sd a6, 160(a0) sd a7, 168(a0) sd s2, 176(a0) sd s3, 184(a0) sd s4, 192(a0) sd s5, 200(a0) sd s6, 208(a0) sd s7, 216(a0) sd s8, 224(a0) sd s9, 2**(a0) sd s10, 240(a0) sd s11, 248(a0) sd t3, 256(a0) sd t4, 264(a0) sd t5, 272(a0) sd t6, 280(a0)
# save the user a0 in p->trapframe->a0 csrr t0, sscratch sd t0, 112(a0)
 # restore kernel stack pointer from p->trapframe->kernel_sp ld sp, 8(a0)
 # make tp hold the current hartid, from p->trapframe->kernel_hartid ld tp, **(a0)
 # load the address of usertrap(), p->trapframe->kernel_trap
9
 ld t0, 16(a0)
 # restore kernel page table from p->trapframe->kernel_satp ld t1, 0(a0) csrw satp, t1 sfence.vma zero, zero
 # a0 is no longer valid, since the kernel page # table does not specially map p->tf.
 # jump to usertrap(), which does not return jr t0
.globl userret
userret:
 # userret(TRAPFRAME, pagetable) # switch from kernel to user. # usertrapret() calls here. # a0: TRAPFRAME, in user page table. # a1: user page table, for satp.
 # switch to the user page table. csrw satp, a1 sfence.vma zero, zero
 # put the saved user a0 in sscratch, so we # can swap it with our a0 (TRAPFRAME) in the last step. ld t0, 112(a0) csrw sscratch, t0
 # restore all but a0 from TRAPFRAME ld ra, 40(a0) ld sp, 48(a0) ld gp, 56(a0) ld tp, 64(a0) ld t0, 72(a0) ld t1, 80(a0) ld t2, 88(a0) ld s0, 96(a0) ld s1, 104(a0) ld a1, 120(a0) ld a2, 128(a0) ld a3, 136(a0) ld a4, 144(a0) ld a5, 152(a0) ld a6, 160(a0) ld a7, 168(a0) ld s2, 176(a0) ld s3, 184(a0) ld s4, 192(a0) ld s5, 200(a0) ld s6, 208(a0) ld s7, 216(a0) ld s8, 224(a0) ld s9, 2**(a0) ld s10, 240(a0) ld s11, 248(a0) ld t3, 256(a0) ld t4, 264(a0) ld t5, 272(a0) ld t6, 280(a0)
# restore user a0, and save TRAPFRAME in sscratch csrrw a0, sscratch, a0
 # return to user mode and user pc. # usertrapret() set up sstatus and sepc. Sret
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP201、java設計程序代做
  • 下一篇:CMPT 489代做、Program Synthesis編程設計代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久综合给合| 欧美日韩在线观看首页| 日韩二区在线观看| 国产成人精品一区二区三区免费| 黄色另类av| 精品亚洲成人| 日本一道高清一区二区三区| 日韩欧美激情| 综合日韩av| 99热精品在线观看| 久久福利综合| 日韩中文字幕在线一区| 国产精品v亚洲精品v日韩精品 | 精精国产xxx在线视频app| 国产亚洲福利| 波多野结衣在线播放一区| 激情小说亚洲图片| 亚洲婷婷伊人| 成人精品在线| 国产精品分类| 亚洲高清在线| 亚洲国产aⅴ精品一区二区三区| 免费高清不卡av| 亚洲一区免费| 伊人天天综合| 狠狠88综合久久久久综合网| 欧美wwwwww| 高清日韩中文字幕| 在线精品视频一区| 日本中文字幕一区二区视频| 国产成人视屏| 综合色一区二区| 国产欧美日韩一级| 成人在线视频免费| 自拍偷自拍亚洲精品被多人伦好爽| 国产精品x453.com| 好吊一区二区三区| 日韩三区视频| 亚洲瘦老头同性70tv| 成人免费观看49www在线观看| 乱一区二区av| 日本v片在线高清不卡在线观看| 日韩制服一区| 91九色综合| 91福利精品在线观看| 成人日韩在线| 精品视频在线一区二区在线| 三上悠亚一区二区| 天堂久久一区| 一区二区三区国产在线| 国产日韩欧美三级| 亚洲精品影视| 中文字幕亚洲精品乱码| 一区二区三区在线电影| 国产在线视频欧美一区| 欧美人与拘性视交免费看| 亚洲人成网77777色在线播放| 国内精品久久久久久久影视简单| 国产一区二区三区四区五区| 亚洲精品一级二级三级| 秋霞一区二区三区| 精品国产欧美日韩| 激情婷婷综合| 免费看亚洲片| 日韩理论视频| 日韩精品成人一区二区三区| 久久中文资源| 日韩电影免费在线| 精品大片一区二区| 不卡av一区二区| 爽好多水快深点欧美视频| 成人国产二区| 日韩国产精品久久久| 一区二区三区四区电影| 啪啪亚洲精品| 999久久久精品国产| 夜夜嗨一区二区| av日韩中文| 欧美一级播放| 日韩精品a在线观看91| 精品美女在线视频| 狠狠入ady亚洲精品经典电影| 免费人成精品欧美精品| 精品123区| 一区二区三区中文| 好吊妞视频这里有精品| 精品一区亚洲| 久久男人天堂| 日本成人中文字幕| 一区二区三区四区视频免费观看| 久久在线免费| bbw在线视频| 影音先锋久久资源网| 日韩黄色免费网站| 久久中文字幕av一区二区不卡| 性欧美长视频| 男女啪啪999亚洲精品| 欧美美女在线| 婷婷综合视频| 亚洲tv在线| 亚洲小说图片视频| 亚洲国产影院| 免费成人在线电影| 91精品久久久久久久久久不卡| 国产欧美午夜| 亚洲1区在线观看| 在线亚洲成人| 美女网站视频久久| 91蜜桃臀久久一区二区| 99精品99| 日韩精品电影一区亚洲| 日韩中文字幕在线一区| 国产亚洲成人一区| 欧美一区久久| 精品视频高潮| 欧美成人黑人| 日韩在线你懂的| 国产精品五区| 国产精品激情| 在线日韩中文| 国产成人77亚洲精品www| 久久久久久久久久久久电影| 亚洲欧美日本日韩| 日本成人超碰在线观看| 人人香蕉久久| 快播电影网址老女人久久| 日韩电影免费一区| 六月婷婷一区| 欧美国产亚洲精品| 伊人久久成人| 一区二区三区国产精华| 天天做综合网| 国产精品chinese| 精品日产免费二区日产免费二区| 成人在线观看免费播放| 精品视频97| 四虎4545www国产精品 | 国产精品视频一区视频二区| 香蕉视频一区二区三区| 福利一区视频| 欧美日韩中文一区二区| 嫩草伊人久久精品少妇av杨幂| 玖玖精品一区| 天堂中文最新版在线中文| 日韩最新在线| 桃色av一区二区| 国产精品丝袜在线播放| 色综合一本到久久亚洲91| 99久久人爽人人添人人澡| 日韩久久视频| 黄色成人美女网站| 国产福利一区二区三区在线播放| 成人精品影院| 久久这里有精品15一区二区三区| 国产一区日韩一区| 日本特黄久久久高潮| 好看不卡的中文字幕| 伊人久久综合网另类网站| 天堂va蜜桃一区二区三区| 亚洲人成网77777色在线播放| 老色鬼在线视频| 精品久久中文| 国产精品观看| 三级欧美在线一区| 99久久香蕉| 亚欧成人精品| 蜜臀精品一区二区三区在线观看| 警花av一区二区三区| 欧亚一区二区| 亚洲国产一区二区三区在线播放| 美女视频网站久久| 欧洲av不卡| 九色精品91| 亚洲日本三级| 久久国产尿小便嘘嘘| 黄色亚洲免费| 中文字幕一区二区三区日韩精品| 欧美一级做一级爱a做片性| 欧美日韩国产综合网| 日韩mv欧美mv国产网站| 青青草国产一区二区三区| 欧美另类专区| 亚洲欧洲国产精品一区| 日韩精品免费视频人成| 蜜桃av一区二区三区电影| 国产三级精品三级在线观看国产| 日韩精品免费视频人成| 免费成人你懂的| 999国产精品永久免费视频app| 国产成人视屏| 婷婷久久综合九色综合99蜜桃| 在线国产一区二区| 精品国产18久久久久久二百| 国产欧美综合一区二区三区| 日本精品三区| 欧美精品黄色| 久久三级福利| 精品国产亚洲一区二区在线观看 | 噜噜爱69成人精品| 99久久婷婷这里只有精品|