加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫院企業服務合肥法律

代做EF5070、代寫c/c++編程設計

時間:2023-11-30  來源:合肥網hfw.cc  作者:hfw.cc 我要糾錯



Financial Econometrics (EF5070) 
1
Financial Econometrics (EF5070) 2023/2024 Semester A
Assignment 3
• The assignment is to be done individually.
• Your solution should consist of one single pdf file and one single R file.
• Clearly state your name, SIS ID, and the course name on the cover page of your pdf file.
• In your pdf file, indicate how you solved each problem and show intermediate steps. It
is advised to show numerical results in the form of small tables. Make your R code easyto-read. Use explanatory comments (after a # character) in your R file if necessary.
Overly lengthy solutions will receive low marks.
• You need to upload your solution (i.e., the one pdf file and the one R file) on the Canvas
page of the course (Assignments → Assignment 3). The deadline for uploading your
solution is 2 December, 2023 (Saturday), 11:59 p.m.
Financial Econometrics (EF5070) Dr. Ferenc Horvath
2
Exercise 1.
The file a3data.txt contains the daily values of a fictional total return index.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• Use the BDS test to determine whether the returns are realizations of i.i.d. random
variables.
• Plot the ACF of the returns and of the squared returns. Do these plots confirm your
conclusion which you obtained by using the BDS test?
• Based on the Akaike information criterion, fit an AR(p) model to the return time series
with w**1; ≤ 5. Check whether the model residuals are realisations of a white noise or not
by plotting the ACF of the residuals and of the squared residuals, and by performing
the BDS test on the residuals.
• Perform the RESET test, Keenan’s test, Tsay’s F test, and the threshold test to determine
whether the daily n.a.c.c. net returns indeed follow an AR(p) model, where p is equal
to the number of lags which you determined in the previous point based on the Akaike
information criteria. Is your conclusion (based on the four tests) regarding the validity
of an AR(p) model in accordance with your conclusions regarding whether the residuals
in the previous point are realisations of a white noise?
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?)
Financial Econometrics (EF5070) Dr. Ferenc Horvath
3
Exercise 2.
The file HSTRI.txt contains the Hang Seng Total Return Index (which is the major stock market
index of the Hong Kong Stock Exchange) values from 3 January, 19** to 22 September, 2023.
• Calculate the daily non-annualized continuously-compounded (n.a.c.c.) net returns.
• For each daily n.a.c.c. net return, create a dummy variable which takes the value 1 if
the return was positive and the value zero otherwise. Build a neural network model
where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
o Using the last 1000 observations, forecast the signs of the next-period returns.
Determine the mean absolute error of your forecast. (I.e., in how many percent
of the cases did your model correctly forecast the sign of the next-period return
and in how many percent of the cases did it make a mistake in forecasting the
sign?) Is this result in accordance with the Efficient Market Hypothesis,
according to which (roughly speaking) returns are not predictable?
Financial Econometrics (EF5070) Dr. Ferenc Horvath
4
Exercise 3.
Consider again the daily n.a.c.c. net returns from Exercise 2.
• Calculate the standard deviation of the first 7**4 returns.
• Create a dummy variable for each observed return such that the dummy variable takes
the value of 1 if the absolute value of the return is greater than the previously
calculated standard deviation and it takes the value of zero otherwise.
• Build a neural network model where
o the output variable is the previously created dummy variable,
o the two input variables are the previous day’s n.a.c.c. net return and its
corresponding dummy variable,
o there is one hidden layer with three neurons,
o the two input variables can enter the output layer directly by skipping the
hidden layer,
o and the activation functions are logistic functions.
o Train the neural network using the daily n.a.c.c. net returns, but do not use the
last 1000 observations.
• Using the last 1000 observations, forecast whether the absolute value of the nextperiod return will be higher or not than the earlier calculated standard deviation.
Determine the mean absolute error of your forecast. (I.e., in how many percent of the
cases was your model forecast correct and in how many percent of the cases was it
incorrect?) Is this result in accordance with the concept of volatility clustering?
請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

掃一掃在手機打開當前頁
  • 上一篇:代寫ecs36c 有向圖程序
  • 下一篇:PX390編程代做、C/C++程序語言代寫
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業/產品研發/客戶要求/設計優化
    有限元分析 CAE仿真分析服務-企業/產品研發
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    急尋熱仿真分析?代做熱仿真服務+熱設計優化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發動機性能
    挖掘機濾芯提升發動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網 排行網

    關于我們 | 打賞支持 | 廣告服務 | 聯系我們 | 網站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網 版權所有
    ICP備06013414號-3 公安備 42010502001045

    久久免费高清| 国产成人手机高清在线观看网站| 免费黄色成人| 日韩电影一区二区三区| 99欧美精品| 一本色道久久综合亚洲精品高清| 久久久精品区| 99精品热视频只有精品10| 成人激情免费视频| 波多野结衣在线观看一区二区三区| 国产精品美女久久久久久不卡| 日韩精品三区| 免费在线观看一区二区三区| 久久久久国产精品一区三寸| 久久最新网址| 欧美在线免费一级片| 都市激情亚洲一区| 国产精品三上| 亚洲一级高清| 精品国产一区二区三区久久久蜜臀| 国产aⅴ精品一区二区四区| 成人精品高清在线视频| 蜜臀久久99精品久久久画质超高清 | 尹人成人综合网| 99精品电影| 欧美视频亚洲视频| 精品午夜av| 国产亚洲一区二区三区不卡| 久久精品久久久精品美女| 欧美7777| 超碰一区二区| 蜜臀国产一区二区三区在线播放| 99国产成+人+综合+亚洲欧美| 日韩精品午夜| 韩国精品福利一区二区三区| 九九99久久精品在免费线bt| 亚洲黄页网站| 欧美影院视频| 国产日产精品一区二区三区四区的观看方式| 国产一区二区三区的电影| 日韩在线视屏| 国产va在线视频| 国产精品99久久精品| 丝袜美腿成人在线| 性色一区二区三区| 在线视频日韩| 久色成人在线| 蜜臀av性久久久久蜜臀aⅴ| 玖玖精品视频| 免费成人在线观看视频| 免费精品视频最新在线| 免费一级片91| 中文字幕不卡三区视频| 亚洲精华液一区二区三区| 亚洲精品mv| 第四色男人最爱上成人网| 精品极品在线| 国产伊人久久| 麻豆免费精品视频| 亚洲欧洲中文字幕| 懂色av色香蕉一区二区蜜桃| av日韩在线免费观看| 亚洲精品国产动漫| 精品一区视频| 久久99偷拍| 蜜桃国内精品久久久久软件9| 婷婷色综合网| 蜜桃在线一区二区三区| 亚洲成人不卡| 另类小说视频一区二区| 9999精品| 爱高潮www亚洲精品| 色天天色综合| 一区在线视频| 国产盗摄——sm在线视频| 日本在线中文字幕一区二区三区| 日本电影久久久| 欧美日韩一区二区国产| 日韩欧美影院| 99成人在线视频| 国产免费成人| 欧洲一级精品| 欧美精品国产一区| av一级亚洲| 亚洲国产一区二区在线观看| 美女网站久久| 久久国内精品| 国产欧美日韩在线一区二区| 欧美视频亚洲视频| 99在线|亚洲一区二区| 中文字幕这里只有精品| 日韩高清电影一区| 亚洲一区二区三区中文字幕在线观看| 欧美大奶一区二区| 免费久久99精品国产自在现线| 中文字幕在线免费观看视频| 日韩国产欧美视频| 视频二区欧美| 亚洲激情中文在线| 日韩电影二区| 欧美日本二区| 国产毛片精品| 免费av成人在线| 麻豆精品视频在线观看免费| 视频一区中文字幕精品| 国产亚洲一级| 欧美在线首页| 好吊妞视频这里有精品| 国产亚洲成人一区| 免费亚洲视频| 欧美三区不卡| 蜜桃久久精品一区二区| 国产精品分类| 女同一区二区三区| 三级电影一区| 欧美精品成人| 欧美搞黄网站| 国产资源一区| 成人午夜网址| 毛片在线网站| 美女精品一区最新中文字幕一区二区三区 | 午夜日韩在线| 青草综合视频| 7777精品| 中文字幕人成乱码在线观看| 91精品国产色综合久久不卡粉嫩| 蜜臀av一区| 亚洲性色av| 精品精品视频| 久久久久久夜| 国产一区二区亚洲| 亚洲一区国产一区| 欧美国产高潮xxxx1819| 国产伊人精品| 麻豆精品一区二区三区| 亚洲91中文字幕无线码三区| 成人日韩精品| 精品国产91| 祥仔av免费一区二区三区四区| 天堂va欧美ⅴa亚洲va一国产| 91影院成人| 日韩区一区二| 日韩电影二区| 欧美国产极品| 精精国产xxx在线视频app| 大陆精大陆国产国语精品| 91麻豆国产自产在线观看亚洲| 国产精品午夜一区二区三区| 美女爽到呻吟久久久久| 国产探花在线精品| 人人狠狠综合久久亚洲| 日韩精品丝袜美腿| 亚洲综合电影| 加勒比色综合久久久久久久久| 性感美女一区二区在线观看| 欧美日韩天堂| 久久不卡日韩美女| 艳女tv在线观看国产一区| 亚洲影视一区二区三区| 国产一区二区精品| 日韩高清影视在线观看| 欧美裸体视频| 久久久人成影片免费观看| 日本在线观看不卡视频| 香蕉久久国产| 伊人精品久久| 男人亚洲天堂| 影音国产精品| 日韩电影免费在线| 亚洲精品tv| 国产高清一区| 亚洲婷婷影院| 狂野欧美性猛交xxxx| 天天射—综合中文网| 国产aⅴ精品一区二区三区久久| 欧美国产美女| 91精品啪在线观看国产18| 欧美黄色一级视频| 97精品一区| 色婷婷综合久久久久久| 日本成人中文字幕在线视频| 免费久久99精品国产自在现线| 色悠久久久久综合先锋影音下载| 另类一区二区三区| 一本色道久久综合一区| 成人三级av在线| 国产精品mm| 日韩久久视频| 国产视频亚洲| 久久97精品| 国内黄色精品| 日日夜夜综合| 蜜臀av性久久久久蜜臀aⅴ四虎| 久久97精品| 亚欧日韩另类中文欧美| 国产成人精选| 91综合视频| 影音先锋国产精品| 蜜臀av一区| 日本一区二区三区视频在线看 |