加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術(shù)合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

代寫CSE 158、代做Python語言編程

時間:2023-11-18  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


CSE 158/258, DSC 256, MGTA 461, Fall 2023: Assignment 1

Instructions

In this assignment you will build recommender systems to make predictions related to video game reviews

from Steam.

Submissions will take the form of prediction files uploaded to gradescope, where their test set performance

will be evaluated on a leaderboard. Most of your grade will be determined by ‘absolute’ cutoffs;

the leaderboard ranking will only determine enough of your assignment grade to make the

assignment FUN.

The assignment is due Monday, Nov 20, though make sure you upload solutions to the leaderboard

regularly.

You should submit two files:

writeup.txt a brief, plain-text description of your solutions to each task; please prepare this adequately in

advance of the submission deadline; this is only intended to help us follow your code and does not need

to be detailed.

assignment1.py A python file containing working code for your solutions. The autograder will not execute

your code; this file is required so that we can assign partial grades in the event of incorrect solutions,

check for plagiarism, etc. Your solution should clearly document which sections correspond to

each task. We may occasionally run code to confirm that your outputs match submitted answers, so

please ensure that your code generates the submitted answers.1

Along with two files corresponding to your predictions:

predictions Played.csv, predictions Hours.csv Files containing your predictions for each (test) instance

(you should submit two of the above three files). The provided baseline code demonstrates how to

generate valid output files.

To begin, download the files for this assignment from:

https://cseweb.ucsd.edu/classes/fa23/cse258-a/files/assignment1.tar.gz

Files

train.json.gz 175,000 instances to be used for training. This data should be used for both the ‘play prediction’

and ‘time played prediction’ tasks. It is not necessary to use all observations for training, for example if

doing so proves too computationally intensive.

userID The ID of the user. This is a hashed user identifier from Steam.

gameID The ID of the game. This is a hashed game identifier from Steam.

text Text of the user’s review of the game.

date Date when the review was entered.

hours How many hours the user played the game.

hours transformed log2

(hours+1). This transformed value is the one we are trying to predict.

pairs Played.csv Pairs on which you are to predict whether a game was played.

pairs Hours.csv Pairs (userIDs and gameIDs) on which you are to predict time played..

baselines.py A simple baseline for each task, described below.

Please do not try to collect these reviews from Steam, or to reverse-engineer the hashing function I used to

anonymize the data. Doing so will not be easier than successfully completing the assignment. We will run

the code of any solution suspected of violating the competition rules, and you may be penalized

if your code does produce your submitted solution.

1Don’t worry too much about dependencies if importing non-standard libraries.

1

Tasks

You are expected to complete the following tasks:

Play prediction Predict given a (user,game) pair from ‘pairs Played.csv’ whether the user would play the

game (0 or 1). Accuracy will be measured in terms of the categorization accuracy (fraction of correct

predictions). The test set has been constructed such that exactly 50% of the pairs correspond to played

games and the other 50% do not.

Time played prediction Predict how long a person will play a game (transformed as log2

(hours + 1), for

those (user,game) pairs in ‘pairs Hours.csv’. Accuracy will be measured in terms of the mean-squared

error (MSE).

A competition page has been set up on Kaggle to keep track of your results compared to those of other

members of the class. The leaderboard will show your results on half of the test data, but your ultimate score

will depend on your predictions across the whole dataset.

Grading and Evaluation

This assignment is worth 22% of your grade. You will be graded on the following aspects. Each of the two

tasks is worth 10 marks (i.e., 10% of your grade), plus 2 marks for the written report.

• Your ability to obtain a solution which outperforms the leaderboard baselines on the unseen portion of

the test data (5 marks for each task). Obtaining full marks requires a solution which is substantially

better than baseline performance.

• Your ranking for each of the tasks compared to other students in the class (3 marks for each task).

• Obtain a solution which outperforms the baselines on the seen portion of the test data (i.e., the leaderboard). This is a consolation prize in case you overfit to the leaderboard. (2 mark for each task).

Finally, your written report should describe the approaches you took to each of the tasks. To obtain good

performance, you should not need to invent new approaches (though you are more than welcome to!) but

rather you will be graded based on your decision to apply reasonable approaches to each of the given tasks (2

marks total).

Baselines

Simple baselines have been provided for each of the tasks. These are included in ‘baselines.py’ among the files

above. They are mostly intended to demonstrate how the data is processed and prepared for submission to

Gradescope. These baselines operate as follows:

Play prediction Find the most popular games that account for 50% of interactions in the training data.

Return ‘1’ whenever such a game is seen at test time, ‘0’ otherwise.

Time played prediction Return the global average time, or the user’s average if we have seen them before

in the training data.

Running ‘baselines.py’ produces files containing predicted outputs (these outputs can be uploaded to Gradescope). Your submission files should have the same format.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫COMP 340 Operating Systems
  • 下一篇:SEHH2042代做、代寫c++,Java編程
  • 無相關(guān)信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設(shè)計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設(shè)計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結(jié)合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關(guān)于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權(quán)所有
    ICP備06013414號-3 公安備 42010502001045

    日韩a**中文字幕| 欧美天天在线| 麻豆精品视频在线观看| 蜜桃av一区二区在线观看| 久久精品亚洲成在人线av网址| 日本午夜一本久久久综合| 国产精品久久久久久久免费观看| 欧美一二区在线观看| 日韩成人一级| 麻豆精品视频在线观看免费| av在线资源| 亚洲一区二区免费看| 久久精品主播| 久久伊人影院| 国产亚洲一区| 欧美人成在线| 日韩成人综合网| 免费成人在线电影| 免费看黄色91| 在线一区视频| 欧美理论视频| 精品国产91| 日韩免费成人| 国产精品一区二区三区av麻| 久久中文在线| 成人黄色免费观看| 亚洲午夜天堂| 日本在线电影一区二区三区| 婷婷久久综合| 欧美日韩第一| 亚洲国产综合在线看不卡| 国产调教精品| 国产精品高潮呻吟久久久久| 久久久精品区| 日韩精品三级| 亚洲成av人片在线观看www| 国产亚洲欧美日韩在线观看一区二区| 老司机免费视频一区二区| 色999韩欧美国产综合俺来也| 日韩精品诱惑一区?区三区| 蜜臀av一区二区在线观看| 欧美综合国产| 日韩成人a**站| 93在线视频精品免费观看| 91久久夜色精品国产按摩| 蜜桃精品视频在线观看| 免费成人在线视频观看| 男女男精品网站| 97久久视频| 成人日韩在线| 韩国女主播一区二区| 精品免费av在线| 久久天天久久| 亚洲国产一区二区精品专区| 日本不卡免费在线视频| 欧美日本不卡高清| 一区二区不卡| 少妇精品久久久一区二区| 日本三级久久| 99国产精品久久一区二区三区| 欧美涩涩视频| 91精品国产91久久久久久密臀| 久久国产精品亚洲人一区二区三区| 欧美先锋资源| av不卡在线| 国产精品黑丝在线播放| 日韩夫妻性生活xx| 久久国产三级精品| av在线精品| 日韩极品在线| 久久天堂精品| 999在线观看精品免费不卡网站| 男女精品视频| 快播电影网址老女人久久| 日韩一区二区三免费高清在线观看| 麻豆91在线看| 日韩avvvv在线播放| 亚洲精品在线国产| 亚州av乱码久久精品蜜桃| 视频一区视频二区中文字幕| 日韩高清欧美| 日本午夜一本久久久综合| 亚洲理论电影片| 麻豆成人入口| 噜噜噜91成人网| 免费看av不卡| 综合激情婷婷| 国产精品qvod| 国产亚洲精品久久久久婷婷瑜伽| 三级在线观看视频| 欧美亚洲免费| 精品亚洲二区| 最新亚洲一区| 欧洲午夜精品| 亚洲人成精品久久久| 美日韩黄色大片| 免费在线欧美视频| 日韩精品电影在线| 亚洲视频一起| 亚洲综合日本| 精品美女一区| 日本三级亚洲精品| 亚洲精品1区2区| 在线一区视频观看| 亚洲精品合集| 婷婷另类小说| 成人在线免费av| 日本免费一区二区视频| 亚洲激情视频| 国产日韩欧美一区| 超碰在线一区| 欧美xxav| 国产日产一区 | 国产日韩电影| 91精品国产自产观看在线 | 一区二区不卡| 人体久久天天| 中文字幕在线免费观看视频| 麻豆免费看一区二区三区| 成人另类视频| 国产色播av在线| 国产一区二区三区91| 天天影视欧美综合在线观看| 99精品国自产在线| 成人福利一区| 天堂av在线| 国产日韩一区二区三免费高清| 久久国产高清| 粉嫩一区二区三区在线观看| jlzzjlzz亚洲女人| 日韩精品乱码av一区二区| 久久久人人人| 涩涩涩久久久成人精品| 好吊妞视频这里有精品| 欧美三级网站| 九色精品蝌蚪| 欧美肥老太太性生活| 亚州av日韩av| 亚洲欧美日韩国产一区二区| 影音先锋在线一区| 亚洲女同中文字幕| 亚洲最新av| 奶水喷射视频一区| 亚洲69av| 热三久草你在线| 日韩在线观看一区二区三区| 久九九久频精品短视频| 亚洲91网站| 国产一区一一区高清不卡| 免费看久久久| 欧美亚洲网站| 亚洲一区网站| 欧美女优在线视频| 日本а中文在线天堂| 911精品国产| 99久久er| 在线看片不卡| 久久99免费视频| 伊人久久综合一区二区| 成人h动漫精品一区二区器材| 精品免费av在线| 欧美一区二区麻豆红桃视频 | 日韩av电影天堂| 日韩免费视频| 欧美一二区在线观看| 综合色一区二区| 免费成人在线网站| 精品国内亚洲2022精品成人| 99精品免费网| 欧美一级专区| 国产女人18毛片水真多18精品| 日韩欧美专区| 99在线精品免费视频九九视 | 嫩呦国产一区二区三区av| 手机看片久久| 黄色亚洲免费| 日产国产欧美视频一区精品| 香蕉视频亚洲一级| 天天超碰亚洲| 日韩精品中文字幕吗一区二区| 懂色aⅴ精品一区二区三区| 午夜日韩激情| 免费观看性欧美大片无片| 国产激情欧美| 蜜臀久久99精品久久久久宅男| www.丝袜精品| 一区二区三区四区在线观看国产日韩 | 久久久久免费av| 国产欧美日韩影院| 福利一区二区| 免费精品视频最新在线| 日韩精品一区二区三区免费观影 | 91国内精品| 中文字幕人成人乱码| 日韩精品1区| 午夜一级在线看亚洲| 91精品在线观看国产| 日韩成人午夜电影| 亚洲巨乳在线| 欧美日韩视频免费看|