加勒比久久综合,国产精品伦一区二区,66精品视频在线观看,一区二区电影

合肥生活安徽新聞合肥交通合肥房產(chǎn)生活服務合肥教育合肥招聘合肥旅游文化藝術合肥美食合肥地圖合肥社保合肥醫(yī)院企業(yè)服務合肥法律

COMP9021代做、代寫Python程序語言

時間:2023-11-17  來源:合肥網(wǎng)hfw.cc  作者:hfw.cc 我要糾錯


Assignment 2

COMP**21, Trimester 3, 2023

1. General matter

1.1. Aims. The purpose of the assignment is to:

• design and implement an interface based on the desired behaviour of an application program;

• practice the use of Python syntax;

• develop problem solving skills.

1.2. Submission. Your program will be stored in a file named polygons.py. After you have developed and

tested your program, upload it using Ed (unless you worked directly in Ed). Assignments can be submitted

more than once; the last version is marked. Your assignment is due by November 20, 10:00am.

1.3. Assessment. The assignment is worth 13 marks. It is going to be tested against a number of input files.

For each test, the automarking script will let your program run for 30 seconds.

Assignments can be submitted up to 5 days after the deadline. The maximum mark obtainable reduces by

5% per full late day, for up to 5 days. Thus if students A and B hand in assignments worth 12 and 11, both

two days late (that is, more than 24 hours late and no more than 48 hours late), then the maximum mark

obtainable is 11.7, so A gets min(11.7, 11) = 11 and B gets min(11.7, 11) = 11. The outputs of your programs

should be exactly as indicated.

1.4. Reminder on plagiarism policy. You are permitted, indeed encouraged, to discuss ways to solve the

assignment with other people. Such discussions must be in terms of algorithms, not code. But you must

implement the solution on your own. Submissions are routinely scanned for similarities that occur when students

copy and modify other people’s work, or work very closely together on a single implementation. Severe penalties

apply.

2. General presentation

You will design and implement a program that will

• extract and analyse the various characteristics of (simple) polygons, their contours being coded and

stored in a file, and

• – either display those characteristics: perimeter, area, convexity, number of rotations that keep the

polygon invariant, and depth (the length of the longest chain of enclosing polygons)

– or output some Latex code, to be stored in a file, from which a pictorial representation of the

polygons can be produced, coloured in a way which is proportional to their area.

Call encoding any 2-dimensional grid of size between between 2 × 2 and 50 × 50 (both dimensions can be

different) all of whose elements are either 0 or 1.

Call neighbour of a member m of an encoding any of the at most eight members of the grid whose value is 1

and each of both indexes differs from m’s corresponding index by at most 1. Given a particular encoding, we

inductively define for all natural numbers d the set of polygons of depth d (for this encoding) as follows. Let a

natural number d be given, and suppose that for all d

0 < d, the set of polygons of depth d

0 has been defined.

Change in the encoding all 1’s that determine those polygons to 0. Then the set of polygons of depth d is

defined as the set of polygons which can be obtained from that encoding by connecting 1’s with some of their

neighbours in such a way that we obtain a maximal polygon (that is, a polygon which is not included in any

other polygon obtained from that encoding by connecting 1’s with some of their neighbours).

1

2

3. Examples

3.1. First example. The file polys_1.txt has the following contents:

Here is a possible interaction:

$ python3

...

>>> from polygons import *

>>> polys = Polygons('polys_1.txt')

>>> polys.analyse()

Polygon 1:

Perimeter: 78.4

Area: 384.16

Convex: yes

Nb of invariant rotations: 4

Depth: 0

Polygon 2:

Perimeter: 75.2

Area: 353.44

Convex: yes

Nb of invariant rotations: 4

Depth: 1

Polygon 3:

Perimeter: 72.0

Area: **4.00

Convex: yes

Nb of invariant rotations: 4

Depth: 2

Polygon 4:

Perimeter: 68.8

Area: 295.84

Convex: yes

Nb of invariant rotations: 4

Depth: 3

Polygon 5:

Perimeter: 65.6

Area: 268.96

Convex: yes

Nb of invariant rotations: 4

Depth: 4

Polygon 6:

Perimeter: 62.4

Area: 243.36

Convex: yes

Nb of invariant rotations: 4

Depth: 5

Polygon 7:

Perimeter: 59.2

Area: 219.04

Convex: yes

Nb of invariant rotations: 4

Depth: 6

Polygon 8:

Perimeter: 56.0

Area: 196.00

Convex: yes

Nb of invariant rotations: 4

4

Depth: 7

Polygon 9:

Perimeter: 52.8

Area: 174.24

Convex: yes

Nb of invariant rotations: 4

Depth: 8

Polygon 10:

Perimeter: 49.6

Area: 153.76

Convex: yes

Nb of invariant rotations: 4

Depth: 9

Polygon 11:

Perimeter: 46.4

Area: 134.56

Convex: yes

Nb of invariant rotations: 4

Depth: 10

Polygon 12:

Perimeter: 43.2

Area: 116.64

Convex: yes

Nb of invariant rotations: 4

Depth: 11

Polygon 13:

Perimeter: 40.0

Area: 100.00

Convex: yes

Nb of invariant rotations: 4

Depth: 12

Polygon 14:

Perimeter: 36.8

Area: 84.64

Convex: yes

Nb of invariant rotations: 4

Depth: 13

Polygon 15:

Perimeter: 33.6

Area: 70.56

Convex: yes

Nb of invariant rotations: 4

Depth: 14

Polygon 16:

Perimeter: 30.4

Area: 57.76

Convex: yes

Nb of invariant rotations: 4

Depth: 15

Polygon 17:

Perimeter: 27.2

Area: 46.24

Convex: yes

Nb of invariant rotations: 4

5

Depth: 16

Polygon 18:

Perimeter: 24.0

Area: 36.00

Convex: yes

Nb of invariant rotations: 4

Depth: 17

Polygon 19:

Perimeter: 20.8

Area: 27.04

Convex: yes

Nb of invariant rotations: 4

Depth: 18

Polygon 20:

Perimeter: 17.6

Area: 19.36

Convex: yes

Nb of invariant rotations: 4

Depth: 19

Polygon 21:

Perimeter: 14.4

Area: 12.96

Convex: yes

Nb of invariant rotations: 4

Depth: 20

Polygon 22:

Perimeter: 11.2

Area: 7.84

Convex: yes

Nb of invariant rotations: 4

Depth: 21

Polygon 23:

Perimeter: 8.0

Area: 4.00

Convex: yes

Nb of invariant rotations: 4

Depth: 22

Polygon 24:

Perimeter: 4.8

Area: 1.44

Convex: yes

Nb of invariant rotations: 4

Depth: 23

Polygon 25:

Perimeter: 1.6

Area: 0.16

Convex: yes

Nb of invariant rotations: 4

Depth: 24

>>> polys.display()

6

The effect of executing polys.display() is to produce a file named polys_1.tex that can be given as

argument to pdflatex to produce a file named polys_1.pdf that views as follows.

7

3.2. Second example. The file polys_2.txt has the following contents:

Here is a possible interaction:

$ python3

...

>>> from polygons import *

>>> polys = Polygons('polys_2.txt')

>>> polys.analyse()

Polygon 1:

Perimeter: 37.6 + 92*sqrt(.**)

Area: 176.64

Convex: no

Nb of invariant rotations: 2

Depth: 0

Polygon 2:

Perimeter: 17.6 + 42*sqrt(.**)

Area: **.92

Convex: yes

Nb of invariant rotations: 1

Depth: 1

Polygon 3:

Perimeter: 16.0 + 38*sqrt(.**)

Area: 60.80

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 4:

Perimeter: 16.0 + 40*sqrt(.**)

Area: 64.00

Convex: yes

Nb of invariant rotations: 1

Depth: 0

Polygon 5:

Perimeter: 14.4 + 34*sqrt(.**)

Area: 48.96

Convex: yes

Nb of invariant rotations: 1

Depth: 3

Polygon 6:

Perimeter: 16.0 + 40*sqrt(.**)

Area: 64.00

Convex: yes

Nb of invariant rotations: 1

Depth: 0

Polygon 7:

Perimeter: 12.8 + 30*sqrt(.**)

Area: 38.40

Convex: yes

Nb of invariant rotations: 1

Depth: 4

Polygon 8:

Perimeter: 14.4 + 36*sqrt(.**)

Area: 51.84

Convex: yes

Nb of invariant rotations: 1

9

Depth: 1

Polygon 9:

Perimeter: 11.2 + 26*sqrt(.**)

Area: 29.12

Convex: yes

Nb of invariant rotations: 1

Depth: 5

Polygon 10:

Perimeter: 14.4 + 36*sqrt(.**)

Area: 51.84

Convex: yes

Nb of invariant rotations: 1

Depth: 1

Polygon 11:

Perimeter: 9.6 + 22*sqrt(.**)

Area: 21.12

Convex: yes

Nb of invariant rotations: 1

Depth: 6

Polygon 12:

Perimeter: 12.8 + ***sqrt(.**)

Area: 40.96

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 13:

Perimeter: 8.0 + 18*sqrt(.**)

Area: 14.40

Convex: yes

Nb of invariant rotations: 1

Depth: 7

Polygon 14:

Perimeter: 12.8 + ***sqrt(.**)

Area: 40.96

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 15:

Perimeter: 6.4 + 14*sqrt(.**)

Area: 8.96

Convex: yes

Nb of invariant rotations: 1

Depth: 8

Polygon 16:

Perimeter: 11.2 + 28*sqrt(.**)

Area: 31.36

Convex: yes

Nb of invariant rotations: 1

Depth: 3

Polygon 17:

Perimeter: 4.8 + 10*sqrt(.**)

Area: 4.80

Convex: yes

Nb of invariant rotations: 1

10

Depth: 9

Polygon 18:

Perimeter: 11.2 + 28*sqrt(.**)

Area: 31.36

Convex: yes

Nb of invariant rotations: 1

Depth: 3

Polygon 19:

Perimeter: 3.2 + 6*sqrt(.**)

Area: 1.92

Convex: yes

Nb of invariant rotations: 1

Depth: 10

Polygon 20:

Perimeter: 9.6 + 24*sqrt(.**)

Area: 23.04

Convex: yes

Nb of invariant rotations: 1

Depth: 4

Polygon 21:

Perimeter: 1.6 + 2*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 1

Depth: 11

Polygon 22:

Perimeter: 9.6 + 24*sqrt(.**)

Area: 23.04

Convex: yes

Nb of invariant rotations: 1

Depth: 4

Polygon 23:

Perimeter: 8.0 + 20*sqrt(.**)

Area: 16.00

Convex: yes

Nb of invariant rotations: 1

Depth: 5

Polygon 24:

Perimeter: 8.0 + 20*sqrt(.**)

Area: 16.00

Convex: yes

Nb of invariant rotations: 1

Depth: 5

Polygon 25:

Perimeter: 6.4 + 16*sqrt(.**)

Area: 10.24

Convex: yes

Nb of invariant rotations: 1

Depth: 6

Polygon 26:

Perimeter: 6.4 + 16*sqrt(.**)

Area: 10.24

Convex: yes

Nb of invariant rotations: 1

11

Depth: 6

Polygon 27:

Perimeter: 4.8 + 12*sqrt(.**)

Area: 5.76

Convex: yes

Nb of invariant rotations: 1

Depth: 7

Polygon 28:

Perimeter: 4.8 + 12*sqrt(.**)

Area: 5.76

Convex: yes

Nb of invariant rotations: 1

Depth: 7

Polygon 29:

Perimeter: 3.2 + 8*sqrt(.**)

Area: 2.56

Convex: yes

Nb of invariant rotations: 1

Depth: 8

Polygon 30:

Perimeter: 3.2 + 8*sqrt(.**)

Area: 2.56

Convex: yes

Nb of invariant rotations: 1

Depth: 8

Polygon 31:

Perimeter: 1.6 + 4*sqrt(.**)

Area: 0.64

Convex: yes

Nb of invariant rotations: 1

Depth: 9

Polygon **:

Perimeter: 1.6 + 4*sqrt(.**)

Area: 0.64

Convex: yes

Nb of invariant rotations: 1

Depth: 9

Polygon 33:

Perimeter: 17.6 + 42*sqrt(.**)

Area: **.92

Convex: yes

Nb of invariant rotations: 1

Depth: 1

Polygon 34:

Perimeter: 16.0 + 38*sqrt(.**)

Area: 60.80

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 35:

Perimeter: 14.4 + 34*sqrt(.**)

Area: 48.96

Convex: yes

Nb of invariant rotations: 1

12

Depth: 3

Polygon 36:

Perimeter: 12.8 + 30*sqrt(.**)

Area: 38.40

Convex: yes

Nb of invariant rotations: 1

Depth: 4

Polygon 37:

Perimeter: 11.2 + 26*sqrt(.**)

Area: 29.12

Convex: yes

Nb of invariant rotations: 1

Depth: 5

Polygon 38:

Perimeter: 9.6 + 22*sqrt(.**)

Area: 21.12

Convex: yes

Nb of invariant rotations: 1

Depth: 6

Polygon 39:

Perimeter: 8.0 + 18*sqrt(.**)

Area: 14.40

Convex: yes

Nb of invariant rotations: 1

Depth: 7

Polygon 40:

Perimeter: 6.4 + 14*sqrt(.**)

Area: 8.96

Convex: yes

Nb of invariant rotations: 1

Depth: 8

Polygon 41:

Perimeter: 4.8 + 10*sqrt(.**)

Area: 4.80

Convex: yes

Nb of invariant rotations: 1

Depth: 9

Polygon 42:

Perimeter: 3.2 + 6*sqrt(.**)

Area: 1.92

Convex: yes

Nb of invariant rotations: 1

Depth: 10

Polygon 43:

Perimeter: 1.6 + 2*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 1

Depth: 11

>>> polys.display()

13

The effect of executing polys.display() is to produce a file named polys_2.tex that can be given as

argument to pdflatex to produce a file named polys_2.pdf that views as follows.

14

3.3. Third example. The file polys_3.txt has the following contents:

Here is a possible interaction:

$ python3

...

>>> from polygons import *

>>> polys = Polygons('polys_3.txt')

>>> polys.analyse()

Polygon 1:

Perimeter: 2.4 + 9*sqrt(.**)

Area: 2.80

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 2:

Perimeter: 51.2 + 4*sqrt(.**)

Area: 117.28

Convex: no

Nb of invariant rotations: 2

Depth: 0

Polygon 3:

Perimeter: 2.4 + 9*sqrt(.**)

Area: 2.80

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 4:

Perimeter: 17.6 + 40*sqrt(.**)

Area: 59.04

Convex: no

Nb of invariant rotations: 2

Depth: 1

Polygon 5:

Perimeter: 3.2 + 28*sqrt(.**)

Area: 9.76

Convex: no

Nb of invariant rotations: 1

Depth: 2

Polygon 6:

Perimeter: 27.2 + 6*sqrt(.**)

Area: 5.76

Convex: no

Nb of invariant rotations: 1

Depth: 2

Polygon 7:

Perimeter: 4.8 + 14*sqrt(.**)

Area: 6.72

Convex: no

Nb of invariant rotations: 1

Depth: 1

Polygon 8:

Perimeter: 4.8 + 14*sqrt(.**)

Area: 6.72

Convex: no

Nb of invariant rotations: 1

16

Depth: 1

Polygon 9:

Perimeter: 3.2 + 2*sqrt(.**)

Area: 1.12

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 10:

Perimeter: 3.2 + 2*sqrt(.**)

Area: 1.12

Convex: yes

Nb of invariant rotations: 1

Depth: 2

Polygon 11:

Perimeter: 2.4 + 9*sqrt(.**)

Area: 2.80

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 12:

Perimeter: 2.4 + 9*sqrt(.**)

Area: 2.80

Convex: no

Nb of invariant rotations: 1

Depth: 0

>>> polys.display()

The effect of executing polys.display() is to produce a file named polys_3.tex that can be given as

argument to pdflatex to produce a file named polys_3.pdf that views as follows.

17

3.4. Fourth example. The file polys_4.txt has the following contents:

Here is a possible interaction:

$ python3

...

>>> from polygons import *

>>> polys = Polygons('polys_4.txt')

>>> polys.analyse()

Polygon 1:

Perimeter: 11.2 + 28*sqrt(.**)

Area: 18.88

Convex: no

Nb of invariant rotations: 2

Depth: 0

Polygon 2:

Perimeter: 3.2 + 5*sqrt(.**)

Area: 2.00

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 3:

Perimeter: 1.6 + 6*sqrt(.**)

Area: 1.76

Convex: yes

Nb of invariant rotations: 1

Depth: 0

Polygon 4:

Perimeter: 3.2 + 1*sqrt(.**)

Area: 0.88

Convex: yes

Nb of invariant rotations: 1

Depth: 0

Polygon 5:

Perimeter: 4*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 4

Depth: 1

Polygon 6:

Perimeter: 4*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 4

Depth: 1

Polygon 7:

Perimeter: 4*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 4

Depth: 1

Polygon 8:

Perimeter: 4*sqrt(.**)

Area: 0.**

Convex: yes

Nb of invariant rotations: 4

19

Depth: 1

Polygon 9:

Perimeter: 1.6 + 1*sqrt(.**)

Area: 0.24

Convex: yes

Nb of invariant rotations: 1

Depth: 0

Polygon 10:

Perimeter: 0.8 + 2*sqrt(.**)

Area: 0.16

Convex: yes

Nb of invariant rotations: 2

Depth: 0

Polygon 11:

Perimeter: 12.0 + 7*sqrt(.**)

Area: 5.68

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 12:

Perimeter: 2.4 + 3*sqrt(.**)

Area: 0.88

Convex: no

Nb of invariant rotations: 1

Depth: 0

Polygon 13:

Perimeter: 1.6

Area: 0.16

Convex: yes

Nb of invariant rotations: 4

Depth: 0

Polygon 14:

Perimeter: 5.6 + 3*sqrt(.**)

Area: 1.36

Convex: no

Nb of invariant rotations: 1

Depth: 0

>>> polys.display()

The effect of executing polys.display() is to produce a file named polys_4.tex that can be given as

argument to pdflatex to produce a file named polys_4.pdf that views as follows.

20

4. Detailed description

4.1. Input. The input is expected to consist of ydim lines of xdim 0’s and 1’s, where xdim and ydim are at

least equal to 2 and at most equal to 50, with possibly lines consisting of spaces only that will be ignored and

with possibly spaces anywhere on the lines with digits. If n is the x

th digit of the y

th line with digits, with

0 ≤ x < xdim and 0 ≤ y < ydim , then n is to be associated with a point situated x × 0.4 cm to the right and

y × 0.4 cm below an origin.

4.2. Output. Consider executing from the Python prompt the statement from polygons import * followed

by the statement polys = Polygons(some_filename). In case some_filename does not exist in the working

directory, then Python will raise a FileNotFoundError exception, that does not need to be caught. Assume

that some_filename does exist (in the working directory). If the input is incorrect in that it does not contain

only 0’s and 1’a besides spaces, or in that it contains either too few or too many lines of digits, or in that

some line of digits contains too many or too few digits, or in that two of its lines of digits do not contain the

same number of digits, then the effect of executing polys = Polygons(some_filename) should be to generate

a PolygonsError exception that reads

Traceback (most recent call last):

...

polygons.PolygonsError: Incorrect input.

If the previous conditions hold but it is not possible to use all 1’s in the input and make them the contours

of polygons of depth d, for any natural number d, as defined in the general presentation, then the effect of

executing polys = Polygons(some_filename) should be to generate a PolygonsError exception that reads

Traceback (most recent call last):

...

polygons.PolygonsError: Cannot get polygons as expected.

If the input is correct and it is possible to use all 1’s in the input and make them the contours of polygons

of depth d, for any natural number d, as defined in the general presentation, then executing the statement

polys = Polygons(some_filename) followed by polys.analyse() should have the effect of outputting a first

line that reads

Polygon N:

with N an appropriate integer at least equal to 1 to refer to the N’th polygon listed in the order of polygons

with highest point from smallest value of y to largest value of y, and for a given value of y, from smallest value

of x to largest value of x, a second line that reads one of

Perimeter: a + b*sqrt(.**)

Perimeter: a

Perimeter: b*sqrt(.**)

with a an appropriate strictly positive floating point number with 1 digit after the decimal point and b an

appropriate strictly positive integer, a third line that reads

Area: a

with a an appropriate floating point number with 2 digits after the decimal point, a fourth line that reads one

of

Convex: yes

Convex: no

a fifth line that reads

Nb of invariant rotations: N

21

with N an appropriate integer at least equal to 1, and a sixth line that reads

Depth: N

with N an appropriate positive integer (possibly 0).

Pay attention to the expected format, including spaces.

If the input is correct and it is possible to use all 1’s in the input and make them the contours of polygons of depth d, for any natural number d, as defined in the general presentation, then executing the statement polys = Polygons(some_filename) followed by polys.display() should have the effect of producing a file named some_filename.tex that can be given as argument to pdflatex to generate a file named

some_filename.pdf. The provided examples will show you what some_filename.tex should contain.

• Polygons are drawn from lowest to highest depth, and for a given depth, the same ordering as previously

described is used.

• The point that determines the polygon index is used as a starting point in drawing the line segments

that make up the polygon, in a clockwise manner.

• A polygons’s colour is determined by its area. The largest polygons are yellow. The smallest polygons

are orange. Polygons in-between mix orange and yellow in proportion of their area. For instance, a

polygon whose size is 25% the difference of the size between the largest and the smallest polygon will

receive 25% of orange (and 75% of yellow). That proportion is computed as an integer. When the value

is not an integer, it is rounded to the closest integer, with values of the form z.5 rounded up to z + 1.

Pay attention to the expected format, including spaces and blank lines. Lines that start with % are comments.

The output of your program redirected to a file will be compared with the expected output saved in a file (of a

different name of course) using the diff command. For your program to pass the associated test, diff should

silently exit, which requires that the contents of both files be absolutely identical, character for character,

including spaces and blank lines. Check your program on the provided examples using the associated .tex files,

renaming them as they have the names of the files expected to be generated by your program.

請加QQ:99515681 或郵箱:99515681@qq.com   WX:codehelp

 

掃一掃在手機打開當前頁
  • 上一篇:代寫股票指標 代做股票公式 代寫大智慧公式
  • 下一篇:MATH4063代做、代寫C++編程設計
  • 無相關信息
    合肥生活資訊

    合肥圖文信息
    2025年10月份更新拼多多改銷助手小象助手多多出評軟件
    2025年10月份更新拼多多改銷助手小象助手多
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)/客戶要求/設計優(yōu)化
    有限元分析 CAE仿真分析服務-企業(yè)/產(chǎn)品研發(fā)
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    急尋熱仿真分析?代做熱仿真服務+熱設計優(yōu)化
    出評 開團工具
    出評 開團工具
    挖掘機濾芯提升發(fā)動機性能
    挖掘機濾芯提升發(fā)動機性能
    海信羅馬假日洗衣機亮相AWE  復古美學與現(xiàn)代科技完美結合
    海信羅馬假日洗衣機亮相AWE 復古美學與現(xiàn)代
    合肥機場巴士4號線
    合肥機場巴士4號線
    合肥機場巴士3號線
    合肥機場巴士3號線
  • 短信驗證碼 目錄網(wǎng) 排行網(wǎng)

    關于我們 | 打賞支持 | 廣告服務 | 聯(lián)系我們 | 網(wǎng)站地圖 | 免責聲明 | 幫助中心 | 友情鏈接 |

    Copyright © 2025 hfw.cc Inc. All Rights Reserved. 合肥網(wǎng) 版權所有
    ICP備06013414號-3 公安備 42010502001045

    五月综合激情| 日本最新不卡在线| 欧美www视频在线观看| 综合激情久久| 在线国产欧美| 在线最新版中文在线| 久久久人人人| 国产探花在线精品| 国产91欧美| 国产精品videosex性欧美| 久久国产日本精品| 日本最新不卡在线| 欧美黄色免费| 精品自拍视频| а√天堂中文在线资源8| 外国成人激情视频| 国产精品调教视频| 亚洲国产最新| 另类的小说在线视频另类成人小视频在线| 首页国产欧美久久| 黄色亚洲精品| 在线观看欧美理论a影院| 日韩一区二区三区精品| 99er精品视频| 亚洲精品欧洲| 麻豆91在线播放| 亚洲日本在线观看视频| 国模套图日韩精品一区二区| 一本色道久久综合亚洲精品高清| 久久一级电影| 99成人在线视频| 国内精品免费| 国产精品三p一区二区| 亚洲国产欧美日韩在线观看第一区| 日本欧美一区二区三区乱码| 国产成人免费| 69堂精品视频在线播放| 色小子综合网| 免费一区二区视频| 亚洲在线一区| 午夜亚洲性色福利视频| 日韩视频一区| 亚洲综合精品| 久久亚洲图片| 免费成人美女在线观看| 亚洲欧美成人| 日韩中文字幕不卡| 日韩精品一二三| 蜜臀精品一区二区三区在线观看 | 精品久久久久久久久久久下田| 日韩avvvv在线播放| 国产一区二区三区四区| 欧美另类中文字幕| 亚洲素人在线| 日韩视频一二区| eeuss国产一区二区三区四区| 香蕉成人app| 国产一区丝袜| 久久久影院免费| 极品中文字幕一区| 亚洲高清影视| 国产一级一区二区| 免费的成人av| 蜜臀久久精品| 日日夜夜精品视频免费| 日本va欧美va瓶| 一级欧美视频| 久久69av| 六月丁香久久丫| 欧美日韩国内| 国产高潮在线| 久久精品国产久精国产| 老司机午夜精品| 国产一区不卡| 黑人久久a级毛片免费观看| 久久久久一区| 国产一级久久| 美女福利一区二区三区| 国产原创一区| 国产精品三级| 激情小说一区| 欧美日韩四区| 欧美激情理论| 国产日韩欧美在线播放不卡| 精品一区二区三区视频在线播放| 日韩成人一级片| 久久中文视频| 日韩1区在线| 欧美另类激情| 亚洲区小说区图片区qvod按摩| 视频二区欧美| 欧美日韩日本国产亚洲在线| 欧美oldwomenvideos| 日韩三区四区| 亚洲成a人片77777在线播放| 精品国产美女| 狂野欧美一区| 久久精品国产精品亚洲综合| 最新国产精品久久久| 97色成人综合网站| 国产午夜久久| 亚洲国产高清一区| 久久久久久久久成人| 精品在线播放| 国产v综合v| 久久av综合| 香蕉视频一区| 午夜影院一区| 欧美美女在线观看| 欧美福利专区| 亚洲欧美在线成人| 亚洲另类av| 伊人天天综合| 欧美一区高清| 动漫视频在线一区| 三区四区不卡| 成人动漫视频在线观看| 久久精品国产99久久| 日韩国产激情| 亚洲小说图片视频| 亚洲免费精品| 日本欧美一区二区三区乱码| 久久免费高清| 青娱乐极品盛宴一区二区| 日韩成人一级| 另类av一区二区| 95精品视频| 在线一级成人| 日日夜夜综合| 禁断一区二区三区在线| sm捆绑调教国产免费网站在线观看 | 日本aⅴ免费视频一区二区三区 | 九九久久国产| 精品国产乱子伦一区二区| 黄色成人免费网| 日韩不卡一区二区| 欧美bbbbb| 国产欧美日韩影院| 久久国产高清| 国产亚洲一卡2卡3卡4卡新区 | 亚洲欧美偷拍自拍| 国产日本精品| 欧美不卡视频| 麻豆一区二区三| 九九久久成人| 亚洲狼人精品一区二区三区| 国产一区久久| 免费亚洲网站| 亚洲精品99| 99国内精品久久久久| 中文欧美日韩| 亚洲人成精品久久久| 免费一级片91| 7777精品| 欧美性aaa| 国产一区二区三区四区三区四| 免费在线亚洲欧美| 欧美网站在线| 一区二区电影| 91综合在线| 理论片一区二区在线| 久久久久伊人| 伊人成人在线| 久久97视频| 精品视频在线一区二区在线| 久久久久91| 欧美激情91| 97精品视频| 久久久国产亚洲精品| 日本视频在线一区| 日韩中文欧美在线| 成人在线视频免费观看| 日韩福利视频网| 免费国产自线拍一欧美视频| 亚洲女娇小黑人粗硬| 日韩欧美精品| 婷婷综合五月| 精品午夜视频| 久久亚洲精品人成综合网| 好吊日精品视频 | 欧美一级二区| 免费精品99久久国产综合精品| 日韩在线成人| 久久精品二区亚洲w码| 西西人体一区二区| 国产精品黄网站| 久久久精品国产**网站| 黄色成人免费网| 免费不卡中文字幕在线| 日韩精品导航| 日韩高清在线不卡| 韩日毛片在线观看| 亚洲小说区图片区| 日韩三级久久| 亚洲天天影视网| 69堂免费精品视频在线播放| 亚洲一区激情| 一区二区三区四区在线看| 日韩伦理一区二区三区| 捆绑调教美女网站视频一区|